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Abstract

Abstractive summarization models heavily001
rely on copy mechanisms, such as the pointer002
network or attention, to achieve good perfor-003
mance, measured by textual overlap with ref-004
erence summaries. As a result, the generated005
summaries stay close to the formulations in006
the source document. We propose the sen-007
tence planner model to generate more abstrac-008
tive summaries. It includes a hierarchical de-009
coder that first generates a representation for010
the next summary sentence, and then condi-011
tions the word generator on this representa-012
tion. Our generated summaries are more ab-013
stractive and at the same time achieve high014
ROUGE scores when compared to human ref-015
erence summaries. We verify the effectiveness016
of our design decisions with extensive evalua-017
tions.018

1 Introduction019

Abstractive summarization has improved drasti-020

cally in recent years due to more efficient decoder021

architectures, like the Transformer (Vaswani et al.,022

2017), and language model pretraining, such as023

BERT (Devlin et al., 2019). As a result of these024

advances, current state-of-the-art models reach the025

performance of extractive systems, and even sur-026

pass them on some datasets (Liu and Lapata, 2019;027

Lewis et al., 2019; Zhang et al., 2020).028

Part of this success, however, is due to the devel-029

opment of stronger copy mechanisms such as the030

pointer-generator network (See et al., 2017) or at-031

tention to the source document (Rush et al., 2015).032

The so-generated summaries copy long sequences033

from the input document, strung together with filler034

words. While this achieves better results in the pre-035

dominant evaluation metric ROUGE (Lin, 2004), it036

comes at the cost of the summaries’ abstractiveness037

and coherence, two qualities that we expect from038

human-written summaries.039

In this paper, we aim to generate more abstrac- 040

tive summaries without sacrificing ROUGE and co- 041

herence. We achieve this by including a planning 042

step at the sentence level before generating the sum- 043

mary word by word. The idea is to plan an outline 044

for the next summary sentence first at a higher level 045

to give the model more capacity for abstraction. 046

As a result, the model has to rely less on copying 047

the input, and thereby generates more abstractive 048

summaries. Our model, the sentence planner, is 049

an encoder-decoder architecture. The encoder is 050

initialized from pretrained BERT weights. The de- 051

coder is hierarchical, and consists of a sentence 052

generator that plans an outline for the summary at 053

the sentence level, and a word generator that is con- 054

ditioned on this outline when generating the sum- 055

mary’s words. Both generators attend to the source 056

document in order to condition their predictions 057

on the input. The sentence planner is trained end- 058

to-end to predict the words of the target summary, 059

with an additional guidance loss that encourages 060

the sentence generator to produce the encoder’s 061

embedding for the target next sentence. This is the 062

first work to propose a hierarchical Transformer 063

decoder that generates a summary from latent sen- 064

tence representations.1 065

We extensively evaluate our model on a recently 066

published highly abstractive dataset and an estab- 067

lished but more extractive corpus. We show that 068

the sentence planner generates more abstractive 069

summaries while improving the ROUGE scores of 070

a state-of-the-art model without a hierarchical de- 071

coder. We use gradient attribution to quantify the 072

impact of the sentence generator on the model’s 073

prediction as well as how much information from 074

the document it captures. Moreover, we verify the 075

effectiveness of our model components with an ab- 076

lation study, and show that simply increasing the 077

baseline’s decoder parameters does not bring it up 078

to par with the hierarchical decoder. Our automatic 079

1Our code is available at <link to be disclosed>.
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Figure 1: (a) BERTSUMEXTABS model. An encoder encodes the document, and a word generator generates
the next word given previous words, while paying attention to the document. (b) Sentence planner model. A
shared encoder separately encodes the document and each sentence of the summary generated so far. The sentence
generator takes the summary sentence embeddings and predicts the next sentence embedding, which the word
generator is then conditioned on. Both generators integrate document information through attention.

evaluations are confirmed in a human evaluation080

study, where the sentence planner improves upon081

its strong baseline in each of six quality categories.082

Our contributions are twofold: (a) We are the083

first to propose a hierarchical Transformer decoder084

that generates summaries from a latent sentence-085

level plan, and (b) we perform an extensive evalua-086

tion of our model on two summarization datasets087

and show that it produces more abstractive sum-088

maries while retaining high ROUGE scores, two089

objectives that are in opposition.090

2 The Hierarchical Decoder091

Our approach builds on the BERTSUMEXTABS092

model (Liu and Lapata, 2019). Their model con-093

sists of an encoder initialized with an extractive094

summarization model, which in turn was initial-095

ized with a BERT model, and a randomly initial-096

ized Transformer decoder.2 We keep the encoder097

the same. We replace the decoder with a hierarchi-098

cal version by introducing a sentence generator that099

develops a high-level plan for the summary, and a100

word generator that is conditioned on this plan. A101

model diagram is shown in Figure 1. Section 2.1102

describes how the sentence generator develops the103

outline for the summary, and Section 2.2 shows104

how the word generator makes use of it.105

2.1 Sentence Generator106

The sentence generator is a two-layer Transformer107

decoder. It receives as inputs the sentence repre-108

sentations of completed summary sentences, and109

2Even stronger results have recently been achieved when
pretraining an entire sequence-to-sequence model on a task
closer to summarization (BART (Lewis et al., 2019), PEGA-
SUS (Zhang et al., 2020)). In this paper, we restrict ourselves
to encoder initializations with the BERT model and do not
consider other pretraining approaches, since these techniques
are orthogonal to our contribution.

generates a sentence representation for the next 110

summary sentence. 111

Inputs. The inputs to the sentence generator are 112

a sequence of representations of already completed 113

summary sentences. These are computed by the 114

same encoder that computes representations for the 115

document tokens. For each individual previous 116

summary sentence, the encoder computes its con- 117

textualized token embeddings. We use the contex- 118

tual embedding of the end-of-sentence token as a 119

representation for the sentence.3 When generating 120

the first summary sentence, there are no completed 121

sentences, so we use a single zero vector as input 122

to the sentence generator. 123

During training with teacher forcing, we use 124

the previous portion of the reference summary as 125

input to the encoder. Since the entire summary is 126

known in advance, we can compute all inputs to 127

the sentence generator in parallel. 128

Self-attention. The sentence generator’s self- 129

attention operates at the sentence level, which 130

means the sequence length n for our Transformer 131

decoder is very small (between 2 and 4 on average, 132

see Section 4). As a result, the self-attention com- 133

putation, which is quadratic in the sequence length, 134

becomes extremely cheap. As in regular Trans- 135

former decoders, a causal mask prevents attention 136

to future sentences. 137

Cross-attention. In the cross-attention, the sen- 138

tence generator pays attention to the encoded docu- 139

ment. Through this connection, the sentence gen- 140

erator is able to compare the already generated 141

summary to the document and identify missing in- 142

formation that should appear in the next sentence. 143

3We found that this performed better than alternative en-
codings of the summary, as discussed in Appendix A.
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Dataset Examples Mean doc length Mean summary length Novel bigrams Corefs

words sentences words sentences

CNN/DailyMail 312085 685.12 30.71 52.00 3.88 54.33% 0.105
Curation Corpus 39911 504.26 18.27 82.63 3.46 69.22% 0.441

Table 1: Dataset statistics.

Output. The output of the sentence generator is a144

representation rsent for the next summary sentence.145

Section 2.2 describes how we condition the word146

generator on this sentence representation.147

Guidance loss. We provide the sentence genera-148

tor with an additional loss term for guidance. Since149

during training, we know the ground truth next sum-150

mary sentence and can compute its encoding rgold,151

we penalize the (element-wise) mean squared error152

between the gold and the predicted next sentence153

representation.154

LMSE =
1

d

d∑
i=1

||r(i)gold − r
(i)
sent||22 (1)155

This loss term is added to the regular cross-entropy156

loss with a scaling hyperparameter λ, although we157

found λ = 1 to work well in practice.158

We do not backpropagate the guidance loss’s gra-159

dients from the sentence generator into the encoder160

to avoid a collapse to a trivial solution. Otherwise,161

the encoder might output the same representation162

for every sentence so that the sentence generator163

can perfectly predict it.164

2.2 Word Generator165

Our word generator is also a Transformer decoder.166

The regular Transformer decoder consists of lay-167

ers l with self-attention, cross-attention and feed-168

forward sublayers. They are defined as follows:169

sl = LN(hl−1 + SelfAtt(hl−1)) (2)170

cl = LN(sl + CrossAtt(sl, renc)) (3)171

hl = LN(cl + FFN(cl)) (4)172

where LN is layer normalization (Ba et al., 2016),173

SelfAtt stands for self-attention, CrossAtt is the174

cross-attention to the encoder outputs renc, and175

FFN is the feed-forward sublayer consisting of two176

fully-connected layers with an intermediate non-177

linearity.178

In our word generator, we condition on the sen-179

tence representation by replacing Eq. 3 with180

cl = LN(sl + CrossAtt(sl, renc) + r′sent) (5)181

where r′sent is the sentence representation obtained 182

from the sentence generator, passed through a fully- 183

connected and a dropout layer. We do not differ- 184

entiate between layers and add the same sentence 185

representation in every layer and to every token. 186

We experimented with various ways to use at- 187

tention in the word generator to integrate the sen- 188

tence representation. However, the conditioning 189

method presented above substantially outperforms 190

the attention-based integrations of the sentence rep- 191

resentation. We further discuss this topic in Ap- 192

pendix A. 193

3 Experimental Setup 194

We now describe the datasets (§ 3.1) and metrics 195

(§ 3.2) that we use to evaluate our model, and give 196

implementation details (§ 3.3) to replicate our ex- 197

periments. 198

3.1 Datasets 199

CNN/DailyMail. The CNN/DailyMail corpus 200

was initially introduced as a question answering 201

dataset in Hermann et al. (2015) and adapted for 202

summarization by Nallapati et al. (2016), and has 203

been widely used. The corpus’s summaries are a 204

concatenation of bullet points describing the high- 205

lights of the news article. They are therefore de- 206

signed to be concise, but do not necessarily form 207

a fluent summary. Extractive approaches perform 208

well on CNN/DailyMail (Liu and Lapata, 2019). 209

Curation Corpus. The Curation Corpus (Cura- 210

tion, 2020) is a recently introduced dataset of pro- 211

fessionally written summaries of news articles. 212

The corpus is an order of magnitude smaller than 213

CNN/DailyMail, and its articles and summaries 214

have fewer but longer sentences (see Table 1). We 215

see this dataset as better representing the summa- 216

rization task, since the summaries were written for 217

this purpose specifically. Additionally, Curation 218

Corpus’s summaries span multiple sentences, in 219

contrast to a dataset such as XSum (Narayan et al., 220

2018), which is a prerequisite for our approach. As 221

a consequence, the majority of our experiments are 222
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conducted on Curation Corpus (see Section 4). We223

describe our preprocessing in Appendix B.224

3.2 Metrics225

ROUGE. The standard metric to automatically226

evaluate summarization systems is the ROUGE F1227

score (Lin, 2004). It measures textual overlap be-228

tween the generated candidate and the reference229

summaries. The length of text spans for comput-230

ing the overlap can be arbitrary, but it is common231

to report unigram and bigram overlap (ROUGE-1,232

ROUGE-2), as well as the longest common subse-233

quence (ROUGE-L).234

Novel bigrams. The fraction of novel bigrams in235

the generated summary with respect to the source236

document measures its abstractiveness. More ab-237

stractive methods generally attain lower ROUGE238

scores. To see why, consider the case where the239

reference summary and the model copy from the240

document. The generated summary is guaranteed241

to get an exact match and high ROUGE. In the242

opposite case, where both the reference summary243

and the model generate novel text, there is a good244

chance that the choice of words is not exactly the245

same, resulting in low ROUGE.246

Corefs. Inspired by Iida and Tokunaga (2012),247

we evaluate discourse coherence with a coreference248

resolution model. We count the number of coref-249

erence links across sentence boundaries as a proxy250

for the coherence of a summary, i.e. whether the251

sentences build upon information in the preceed-252

ing ones. Since summaries with more sentences253

could be favored by this count, we normalize by the254

number of sentences. To extract coreferences from255

the generated summaries, we use the neuralcoref4256

implementation. Table 1 shows the mean number257

of coreference links across sentence boundaries for258

the datasets’ reference summaries. We clearly see259

that the summaries in the Curation Corpus are writ-260

ten in a much more coherent style than the ones261

from CNN/DailyMail. Specifically, the bullet point262

style summaries in CNN/DailyMail do not foster263

summaries whose sentences build on each other.264

However, this is a quality we would expect from265

human summaries, which is yet another reason to266

focus our analysis on the Curation Corpus.267

4https://github.com/huggingface/neuralcoref

3.3 Implementation Details 268

We use the code from BERTSUMEXTABS5 for our 269

experiments. For the decoder, they have their own 270

Transformer implementation while we employ the 271

popular huggingface library (Wolf et al., 2019). 272

In our experiments, we control for the possible 273

discrepancy between these two implementations by 274

reporting BERTSUMEXTABS’s performance with 275

a huggingface Transformer as well. 276

We use the hyperparameters from BERT- 277

SUMEXTABS where not specified otherwise. For 278

our implementation, a grid search found a learning 279

rate of 0.001 for the BERT-initialized encoder and 280

0.02 for the randomly initialized Transformer(s) to 281

work best. We use a fixed batch size of 3 with gradi- 282

ent accumulation over 5 batches. The hyperparame- 283

ters for our implementation of BERTSUMEXTABS 284

and our model are exactly the same, and we only 285

tune the hyperparameters of the sentence generator 286

with a grid search. 287

Our sentence generator is a 2-layer Transformer 288

with 12 heads, a hidden size of 768, an intermediate 289

dimension of 3072 for the feed-forward sublayer, 290

and dropout of 0.1 for attention outputs. We do not 291

apply dropout to the outputs of linear layers. 292

Curation Corpus. All our models are trained for 293

40,000 training steps, with a learning rate warmup 294

of 2,500 steps. We did not see an improvement 295

from initializing the encoder with a pretrained ex- 296

tractive model, and therefore initialize from BERT 297

weights. We average the results from 5 runs, and 298

also report the standard deviation in Appendix C. 299

CNN/DailyMail. Our models are trained for 300

200,000 training steps, with 20,000 warmup steps 301

for the pretrained encoder, and 10,000 warmup 302

steps for the randomly initialized Transformer(s), 303

following Liu and Lapata (2019). We also use their 304

model checkpoint of BERTSUMEXT to initialize 305

the encoder in all our models. 306

4 Results 307

We now turn to evaluation of our method. First, we 308

show the results on Curation Corpus (§ 4.1). With 309

attribution techniques (§ 4.2) and an ablation study 310

(§ 4.3) we uncover how the model uses the sentence 311

generator component. Increasing the number of pa- 312

rameters of BERTSUMEXTABS (BSEA) does not 313

provide the same improvements as our approach 314

5https://github.com/nlpyang/PreSumm
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Model ROUGE Sentences Novel Bigrams Corefs

R-1 R-2 R-L Number Length

Gold summaries - - - 3.46 28.0 69.22% 0.441

BSEA (Liu and Lapata, 2019) 42.95 17.67 37.46 2.73 27.3 36.77% 0.267
BSEA (our implementation) 43.37 17.92 37.73 2.76 28.5 37.29% 0.283

Sentence planner 44.40 18.31 38.69 3.15 28.2 39.29% 0.289

Table 2: Results on Curation Corpus. Mean over 5 runs. Best result in bold.

Model IG Conductance

BSEA - -
+ Sentence generator 25.1% 32.3%
+ LMSE (= Sentence planner) 36.6% 29.1%

Table 3: Attribution study. IG: Attribution of the model
predictions to rsent vs. to cross-attention. Conductance:
Attribution of the predictions to the article via rsent vs.
via cross-attention.

(§ 4.4). On the CNN/DailyMail dataset, our model315

generates more abstractive summaries while retain-316

ing high ROUGE scores (§ 4.5). Finally, a human317

evaluation validates the results from our automatic318

metrics (§ 4.6).319

4.1 Results on Curation Corpus320

Table 2 shows the results of our evaluation on the321

Curation Corpus. The sentence planner substan-322

tially improves ROUGE scores compared to BERT-323

SUMEXTABS. The relative difference is between324

2.2% and 2.5% for the different ROUGE variants.325

A noticeable difference also exists between the326

ROUGE scores of the two base model implemen-327

tations, which is why we continue reporting the328

scores for both in the following.329

The sentence planner’s summaries are more ab-330

stractive than those of BERTSUMEXTABS, as in-331

dicated by the number of novel bigrams. How-332

ever, there is still a large gap to the reference sum-333

maries displayed on the first line. The sentence334

planner generates substantially more sentences than335

BERTSUMEXTABS on average, moving it closer336

to the gold summaries. The mean number of words337

within those sentences stays close to the reference338

statistic. 6339

6The mean number of sentences and (to a lesser extent)
their average length can be influenced by a length penalty
hyperparameter α, which is set between 0.6 and 1 (Liu and
Lapata, 2019). BERTSUMEXTABS with no penalty (α = 1)
produces the same number of sentences and words as the
sentence planner with the largest penalty (α = 0.6), but a large
gap in ROUGE-(1/2/L) remains: (0.7/0.6/0.6). Consistent
with Sun et al. (2019), we find that ROUGE scores increase

The mean number of coreferences across sen- 340

tence boundaries, normalized by the number of 341

sentences, is similar for all models, with the best 342

score achieved by the sentence planner. This num- 343

ber is lower than for the reference summaries but 344

substantially higher than for references and gener- 345

ated summaries from the CNN/DailyMail corpus 346

(see Section 4.5). 347

4.2 Attribution to Sentence Representation 348

A natural question to ask is whether the sentence 349

representation rsent is actually used by the word 350

generator. We therefore compare the attribution 351

of the model predictions to rsent with the attribu- 352

tion to the output of the cross-attention. We use 353

the Integrated Gradients (IG) algorithm (Sundarara- 354

jan et al., 2017) with respect to these intermediate 355

representations. We choose the zero vector as a 356

baseline r0, but taking the mean of rsent over the 357

test examples as a baseline provides similar results. 358

We then integrate along the path from r0 to rsent 359

(rsent − r0)
∫ 1

η=0

∂F (x, r0 + η(rsent − r0))
∂rsent

(6) 360

for a given input x. In practice, we discretize the 361

integral and sum over 50 integration steps with lin- 362

early spaced η values. The case for the attribution 363

to the cross-attention output is analogous. We re- 364

port the relative attribution to rsent in Table 3. The 365

result is averaged over the first 100 examples in our 366

test set. It shows that the attribution to rsent with the 367

sentence generator alone is about a quarter, while 368

three quarters are attributed to the cross-attention. 369

This is already a substantial amount, considering 370

that the alternative is to directly look at the docu- 371

ment. rsent’s attribution share further increases to 372

more than a third with the addition of the guidance 373

loss LMSE, making rsent even more useful. 374

with length andα, but we also find that novel bigrams decrease.
In order to not favor one side of the trade-off over the other,
we stick with the setting of α = 0.95 from Liu and Lapata
(2019) for both models.
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Model ROUGE

R-1 R-2 R-L

BSEA (our implementation) 43.37 (0.37) 17.92 (0.17) 37.73 (0.31)
+ Sentence generator 43.97 (0.30) 18.28 (0.11) 38.32 (0.22)
+ LMSE (= Sentence planner) 44.40 (0.14) 18.31 (0.13) 38.69 (0.10)

Table 4: Ablation study showing ROUGE scores on Curation Corpus when adding the individual components of
our model. Mean and std (in brackets) over 5 runs.

Model Parameters ROUGE Novel Bigrams

R-1 R-2 R-L

BSEA (Liu and Lapata, 2019, Ldec = 6, ffdec = 2048) 180M 43.13 17.80 37.63 36.83%
BSEA (our implementation, Ldec = 6, ffdec = 2048) 182M 43.21 17.69 37.54 37.12%
BSEA (our implementation, Ldec = 6, ffdec = 3072) 191M 43.12 17.84 37.53 37.34%
BSEA (our implementation, Ldec = 8, ffdec = 2048) 198M 43.41 17.91 37.79 37.09%
BSEA (our implementation, Ldec = 8, ffdec = 3072) 210M 43.68 18.06 38.06 37.77%

Sentence planner 208M 44.40 18.31 38.69 39.29%

Table 5: Number of parameters of each model (M = million) together with ROUGE scores and novel bigrams on
Curation Corpus.

While we expect that the sentence representation375

is mostly used as an outline for the next summary376

sentence, we are curious to see how much informa-377

tion of the source document is present in rsent. We378

use the conductance (Dhamdhere et al., 2019) via379

rsent with respect to the encoder outputs, and com-380

pare it to the conductance via the cross-attention.381

We ignore the encoder’s computation as it is the382

same for both paths. Since it is computationally383

expensive to compute gradients over every neuron384

in rsent, we sum over just 5 integration steps and385

average the result over the first 10 examples of the386

test set. From Table 3, we see that almost a third of387

the document’s information is passed through the388

sentence representation. The addition of the guid-389

ance loss decreases this number, which means that390

rsent serves more as an outline than an additional391

condensed representation of the document.392

4.3 Model Ablation393

Table 4 shows an ablation study for the two com-394

ponents we introduced in the hierarchical decoder.395

Both the sentence generator network and the guid-396

ance loss provide a steady increase in ROUGE per-397

formance as well as a reduction in variance. This398

demonstrates the efficacy of our additions.399

4.4 Number of Parameters400

To verify that the improved performance of the401

sentence planner is not just a result of the in-402

creased number of parameters, we perform an ex-403

periment where we increase the base model’s ca-404

pacity. BERTSUMEXTABS consists of a 12-layer 405

Transformer encoder, and a 6-layer decoder. Our 406

model has additional parameters in the 2-layer 407

Transformer that serves as the sentence generator. 408

We therefore increase the BERTSUMEXTABS de- 409

coder’s parameters such that the total model sizes 410

match. Specifically, we increase the number of 411

layers Ldec and the inner dimension of the feed- 412

forward sublayer ffdec. The comparison is shown 413

in Table 5. While increasing the number of pa- 414

rameters improves BERTSUMEXTABS’s ROUGE 415

scores, they are still far behind the sentence plan- 416

ner’s scores. Similarly, the share of novel bigrams 417

rises a bit with additional parameters. However, 418

it still stays behind the abstractiveness of the sen- 419

tence planner, showing that the inductive bias of 420

our hierarchical decoder is very effective. 421

4.5 Results on CNN/DailyMail 422

For comparison with previous work, we now report 423

the results on the more extractive CNN/DailyMail 424

corpus. Table 6 shows the results for BERT- 425

SUMEXTABS and the sentence planner. The first 426

line evaluates the model checkpoint that Liu and 427

Lapata (2019) provide. When we train both the 428

extractive initialization and the abstractive model 429

ourselves with the hyperparameters suggested, we 430

are not quite able to achieve the same results. With 431

our own implementation of the decoder, we are 432

able to close the gap in ROUGE scores somewhat. 433

The sentence planner performs best out of the mod- 434
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Model ROUGE Sentences Novel Bigrams Corefs

R-1 R-2 R-L Num Len

Gold summaries - - - 3.88 14.08 54.33% 0.105

BSEA (Liu and Lapata, 2019, their checkpoint) 42.16 19.49 39.16 3.33 19.1 7.40% 0.124
BSEA (Liu and Lapata, 2019, our training) 41.17 18.82 38.27 3.07 18.5 8.14% 0.126
BSEA (our implementation) 41.48 18.86 38.41 2.99 19.6 7.18% 0.104

Sentence planner 41.87 19.37 39.02 3.82 17.8 10.65% 0.132

Table 6: Results on CNN/DailyMail. Best result with our own training underlined.

Quality BSEA Sentence planner

Non-redundancy 4.05 4.08
Fluency 3.70 3.75
Structure/coherence 3.68 3.85
Informativeness 3.57 3.77
Abstractiveness 3.45 3.65
Semantic similarity 2.98 3.18

Table 7: Mean score for each quality in the human eval-
uation. Scores range from 1 (worst) to 5 (best).

els we trained ourselves. As on the Curation Cor-435

pus, it is also much more abstractive than BERT-436

SUMEXTABS. This could well account for the437

remaining difference in ROUGE scores.438

The mean number of generated sentences by the439

sentence planner is almost identical with the ref-440

erence summaries, and again a lot larger than for441

BERTSUMEXTABS. The generated sentences are442

also shorter, in line with the references. The num-443

ber of coreference links across sentence boundaries444

are similar across models, with the sentence plan-445

ner producing those links most often. We conclude446

that even on the more extractive CNN/DailyMail447

corpus, the sentence planner generates more ab-448

stractive and coherent summaries at high ROUGE.449

4.6 Human Evaluation450

We perform a human evaluation to verify the re-451

sults found by our automatic metrics. We compare452

outputs of BERTSUMEXTABS (our implementa-453

tion) with the sentence planner. The annotators454

are presented with the source article, the reference455

summary as well as the candidate summaries for456

both systems. The systems are labeled 1 and 2,457

and their order is randomized for each example.458

For each candidate summary, the annotators then459

have to select a score from 1 to 5 for six qualities,460

which are presented with a descriptive question461

(in brackets). The qualities are non-redundancy462

(Is information stated only once?), fluency (Is the463

summary grammatical and good to read?), struc-464

ture/coherence (Do the sentences build on each 465

other?), informativeness (Is the important informa- 466

tion captured?), abstractiveness (How much of the 467

summary is rephrased (instead of copied)?), and 468

semantic similarity (How semantically similar is 469

the candidate summary to the gold summary?). 470

We randomly draw 20 examples from the Cura- 471

tion Corpus test set. We limit the number of words 472

of source articles to be above 100 and below 700 473

(includes 70% of examples), to remove extreme 474

examples and keep the workload for annotators rea- 475

sonable. We divide our 6 annotators, which are 476

all NLP experts, into two groups, who review 10 477

examples each, resulting in 3 annotations per ex- 478

ample, of which we take the mean. The results are 479

reported in Table 7. The sentence planner is eval- 480

uated favorably compared to BERTSUMEXTABS 481

in all categories. The non-redundancy and fluency 482

categories show a smaller gap. This is expected, 483

as we did not change the word generator, which 484

impacts these categories the most. On the other 485

categories, the sentence planner achieves larger 486

improvements, showing that the introduction of a 487

hierarchical decoder improves the planning capabil- 488

ities of the model. We quantify the inter-annotator 489

reliability with the intraclass correlation coefficient 490

(ICC), according to Shrout and Fleiss (1979). The 491

reliability is moderate with an ICC of 0.56 and a 492

95% confidence interval of [0.46, 0.65]. 493

We are curious whether the Corefs evaluation 494

can serve as an automatic evaluation of the struc- 495

ture/coherence category. We therefore compute 496

the Pearson ρ for the correlation between the hu- 497

man and the metric’s scores. The correlation is 498

weak at 0.098 (p-value: 0.549). Thus there seems 499

to be a mismatch between what the metric mea- 500

sures (discourse coherence by counting the number 501

of coreference links across sentence boundaries) 502

and the open way the question was formulated 503

in the human evaluation (Do the sentences build 504

on each other?). Nevertheless, the Corefs metric 505
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showed its value by very clearly distinguishing the506

CNN/DailyMail’s summaries from the Curation507

Corpus’s summaries. We therefore leave its opti-508

mal use for future work.509

5 Related Work510

Our proposal is the first hierarchical decoder for a511

Transformer-based text summarization model. We512

survey previous work on hierarchical attention in513

summarization on the encoder side, and sentence-514

level planning on the decoder side.515

5.1 Hierarchical Attention516

Nallapati et al. (2016) use hierarchical attention517

in the encoder with a word- and a sentence-level518

RNN. The attention weights at the word level are519

re-weighted by the sentence-level attention weights.520

Celikyilmaz et al. (2018) divide the document521

into paragraphs, which are encoded separately by522

agents. Each agent performs attention within its523

paragraph, and the decoder attends to the agents.524

Gehrmann et al. (2018) first employ a content se-525

lector at the word level to decide which words are526

candidates for copying. They then use a pointer-527

generator network with just the admissible tokens528

to generate the summary. Miculicich et al. (2018)529

use hierarchical attention networks (Yang et al.,530

2016) to encode the context of previous sentences,531

which is used to inform the translation of the next532

word. In contrast to these methods, we employ hier-533

archy on the decoder side, and generate a sentence534

representation for the next sentence.535

5.2 Sentence Planning536

Tan et al. (2017) use word- and sentence-level537

RNNs in both encoder and decoder. They also538

predict a next sentence embedding, but use a graph539

model as importance for the encoded sentences in-540

stead of attention. The word-level decoder RNN541

is conditioned by initializing the first hidden state542

with the sentence embedding. Perez-Beltrachini543

et al. (2019) use a CNN word encoder/decoder and544

an LSTM sentence decoder for multi-document545

summarization. They predict a next sentence em-546

bedding with attention, which they add to the input547

of each convolutional decoder layer. An auxiliary548

loss pushes sentence embeddings to be close to549

LDA topics of summary sentences. Both mod-550

els do not employ Transformers, and consequently551

their conditioning is very different from ours.552

Several papers have investigated sentence-level553

language modeling. Ippolito et al. (2020) pick the 554

most likely continuation from a set of candidate 555

sentences. Their task provides a context of four 556

sentences and requires to pick a single following 557

sentence. A pretrained BERT model generates a tar- 558

get sentence representation, and the candidate with 559

the highest cosine similarity is selected. Huang 560

et al. (2020) address the task of sentence infilling, 561

where context on both sides of the missing sentence 562

is provided. They learn sentence representations 563

with a denoising autoencoder, predict the repre- 564

sentation of the missing sentence with a separate 565

Transformer, and then use the autoencoder’s de- 566

coder to generate the missing sentence from that 567

representation. Deutsch and Roth (2019) propose 568

the summary cloze task. Given the beginning of 569

a summary, the topic and the reference document, 570

their model has to continue with a single sentence 571

supported by the reference document. These ap- 572

proaches only predict a single sentence, and are 573

given substantial context. In our approach, we gen- 574

erate sentence representations with variable context 575

(or no context for the first summary sentence). 576

Hua and Wang (2020) receive a prompt and a 577

set of keyphrases, which they position and then fill 578

in the gaps around them. Similarly, Jhamtani and 579

Berg-Kirkpatrick (2020) generate a keyword per 580

sentence to be generated, and then generate its left 581

and right context. In contrast to these approaches, 582

our sentence generator outputs a latent representa- 583

tion rsent for the entire sentence, which is used to 584

condition the word generator. We do not tie this 585

representation to specific words. 586

6 Conclusion 587

We presented the sentence planner, an encoder- 588

decoder model with a hierarchical decoder, consist- 589

ing of a sentence and a word generator. Our sen- 590

tence generator computes a plan for the next sum- 591

mary sentence. The word generator is then condi- 592

tioned on this plan when generating the sentence’s 593

words. An additional loss term, which guides the 594

sentence planner towards producing the embedding 595

of the target next sentence, improves the sentence 596

generator’s plan. When comparing the sentence 597

planner to a state-of-the-art model without a hier- 598

archical decoder, it generates more abstractive and 599

coherent summaries at higher ROUGE scores. 600

In future work, we aim to apply our model to 601

other generation tasks, such as machine translation 602

or dialogue generation. 603

8



References604

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-605
ton. 2016. Layer normalization. arXiv preprint606
arXiv:1607.06450.607

Steven Bird, Edward Loper, and Ewan Klein.608
2009. Natural Language Processing with Python.609
O’Reilly Media, Inc.610

Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and611
Yejin Choi. 2018. Deep communicating agents for612
abstractive summarization. In Proceedings of the613
2018 Conference of the North American Chapter of614
the Association for Computational Linguistics: Hu-615
man Language Technologies, Volume 1 (Long Pa-616
pers), pages 1662–1675.617

Curation. 2020. Curation corpus base.618

Daniel Deutsch and Dan Roth. 2019. Summary cloze:619
A new task for content selection in topic-focused620
summarization. In Proceedings of the 2019 Con-621
ference on Empirical Methods in Natural Language622
Processing and the 9th International Joint Confer-623
ence on Natural Language Processing (EMNLP-624
IJCNLP), pages 3711–3720.625

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and626
Kristina Toutanova. 2019. Bert: Pre-training of deep627
bidirectional transformers for language understand-628
ing. In Proceedings of NAACL-HLT 2019, pages629
4171–4186.630

Kedar Dhamdhere, Mukund Sundararajan, and Qiqi631
Yan. 2019. How important is a neuron. In Inter-632
national Conference on Learning Representations.633

Sebastian Gehrmann, Yuntian Deng, and Alexander634
Rush. 2018. Bottom-up abstractive summarization.635
In Proceedings of the 2018 Conference on Empiri-636
cal Methods in Natural Language Processing, pages637
4098–4109.638

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-639
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,640
and Phil Blunsom. 2015. Teaching machines to read641
and comprehend. In Advances in Neural Informa-642
tion Processing Systems, pages 1693–1701.643

Xinyu Hua and Lu Wang. 2020. PAIR: Planning and644
iterative refinement in pre-trained transformers for645
long text generation. In Proceedings of the 2020646
Conference on Empirical Methods in Natural Lan-647
guage Processing (EMNLP).648

Yichen Huang, Yizhe Zhang, Oussama Elachqar, and649
Yu Cheng. 2020. INSET: Sentence infilling with650
inter-sentential transformer. In Proceedings of the651
58th Annual Meeting of the Association for Compu-652
tational Linguistics, pages 2502–2515.653

Ryu Iida and Takenobu Tokunaga. 2012. A metric654
for evaluating discourse coherence based on coref-655
erence resolution. In 24th International Conference656
on Computational Linguistics.657

Daphne Ippolito, David Grangier, Douglas Eck, and 658
Chris Callison-Burch. 2020. Toward better story- 659
lines with sentence-level language models. In Pro- 660
ceedings of the 58th Annual Meeting of the Asso- 661
ciation for Computational Linguistics, pages 7472– 662
7478. 663

Harsh Jhamtani and Taylor Berg-Kirkpatrick. 2020. 664
Narrative text generation with a latent discrete plan. 665
In Findings of the Association for Computational 666
Linguistics: EMNLP 2020. 667

Mike Lewis, Yinhan Liu, Naman Goyal, Mar- 668
jan Ghazvininejad, Abdelrahman Mohamed, Omer 669
Levy, Ves Stoyanov, and Luke Zettlemoyer. 670
2019. BART: Denoising sequence-to-sequence 671
pre-training for natural language generation, trans- 672
lation, and comprehension. arXiv preprint 673
arXiv:1910.13461. 674

Chin-Yew Lin. 2004. ROUGE: A package for auto- 675
matic evaluation of summaries. In Text Summariza- 676
tion Branches Out, pages 74–81. Association for 677
Computational Linguistics. 678

Yang Liu and Mirella Lapata. 2019. Text summariza- 679
tion with pretrained encoders. In Proceedings of the 680
2019 Conference on Empirical Methods in Natural 681
Language Processing. 682

Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas, 683
and James Henderson. 2018. Document-level neural 684
machine translation with hierarchical attention net- 685
works. In Proceedings of the 2018 Conference on 686
Empirical Methods in Natural Language Processing, 687
pages 2947–2954. 688

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, 689
Caglar Gulcehre, and Bing Xiang. 2016. Abstrac- 690
tive text summarization using sequence-to-sequence 691
rnns and beyond. In Proceedings of The 20th 692
SIGNLL Conference on Computational Natural Lan- 693
guage Learning, pages 280–290. 694

Shashi Narayan, Shay B Cohen, and Mirella Lapata. 695
2018. Don’t give me the details, just the summary! 696
topic-aware convolutional neural networks for ex- 697
treme summarization. In Proceedings of the 2018 698
Conference on Empirical Methods in Natural Lan- 699
guage Processing, pages 1797–1807. 700

Laura Perez-Beltrachini, Yang Liu, and Mirella Lapata. 701
2019. Generating summaries with topic templates 702
and structured convolutional decoders. In Proceed- 703
ings of the 57th Annual Meeting of the Association 704
for Computational Linguistics, pages 5107–5116. 705

Alexander M Rush, Sumit Chopra, and Jason Weston. 706
2015. A neural attention model for abstractive sen- 707
tence summarization. In Proceedings of the 2015 708
Conference on Empirical Methods in Natural Lan- 709
guage Processing, pages 379–389. 710

Abigail See, Peter J Liu, and Christopher D Manning. 711
2017. Get to the point: Summarization with pointer- 712
generator networks. In Proceedings of the 55th An- 713
nual Meeting of the Association for Computational 714

9



Linguistics (Volume 1: Long Papers), pages 1073–715
1083.716

Patrick E Shrout and Joseph L Fleiss. 1979. Intraclass717
correlations: uses in assessing rater reliability. Psy-718
chological bulletin, 86(2):420.719

Simeng Sun, Ori Shapira, Ido Dagan, and Ani Nenkova.720
2019. How to compare summarizers without target721
length? pitfalls, solutions and re-examination of the722
neural summarization literature. In Proceedings of723
the Workshop on Methods for Optimizing and Eval-724
uating Neural Language Generation, pages 21–29.725

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.726
Axiomatic attribution for deep networks. In Pro-727
ceedings of the 34th International Conference on728
Machine Learning-Volume 70, pages 3319–3328.729

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017.730
Abstractive document summarization with a graph-731
based attentional neural model. In Proceedings732
of the 55th Annual Meeting of the Association for733
Computational Linguistics (Volume 1: Long Papers),734
pages 1171–1181.735

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob736
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz737
Kaiser, and Illia Polosukhin. 2017. Attention is all738
you need. In Advances in neural information pro-739
cessing systems, pages 5998–6008.740

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien741
Chaumond, Clement Delangue, Anthony Moi, Pier-742
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-743
icz, Joe Davison, Sam Shleifer, Patrick von Platen,744
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,745
Teven Le Scao, Sylvain Gugger, Mariama Drame,746
Quentin Lhoest, and Alexander M. Rush. 2019.747
Huggingface’s transformers: State-of-the-art natural748
language processing. ArXiv, abs/1910.03771.749

Stratos Xenouleas, Prodromos Malakasiotis, Marianna750
Apidianaki, and Ion Androutsopoulos. 2019. Sum-751
qe: A bert-based summary quality estimation model.752
In Proceedings of the 2019 Conference on Empirical753
Methods in Natural Language Processing and the754
9th International Joint Conference on Natural Lan-755
guage Processing (EMNLP-IJCNLP), pages 6007–756
6013.757

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,758
Alex Smola, and Eduard Hovy. 2016. Hierarchi-759
cal attention networks for document classification.760
In Proceedings of the 2016 conference of the North761
American chapter of the association for computa-762
tional linguistics: human language technologies,763
pages 1480–1489.764

Jingqing Zhang, Yao Zhao, Mohammed Saleh, and Pe-765
ter J. Liu. 2020. PEGASUS: Pre-training with ex-766
tracted gap-sentences for abstractive summarization.767
In Proceedings of the 37th International Conference768
on Machine Learning.769

10



A Alternative Approaches770

In the following, we discuss alternative approaches771

which we tried but did not achieve as good results772

as the proposed model.773

Separate encoders for document and summary.774

We conjectured that encoding a document for cross-775

attention in the word generator, and encoding a776

summary for generating the next summary sentence777

representation require extracting different pieces of778

information. We therefore added a second encoder779

for the summary generated so far, and initialized780

it with BERT. This change did not improve over781

sharing the encoder weights for the article and the782

summary. However, it introduced many additional783

parameters, so we discarded this idea.784

Same preprocessing for the summary. BERT-785

SUMEXTABS uses different preprocessing formats786

for the source document and the summary. For787

the document, every sentence is surrounded by a788

leading CLS token and a trailing SEP token. The789

summary is preceded by a beginning of summary790

token, the summary sentences are separated by a791

sentence separator token and the end is marked792

with an end of summary token.793

We tried homogenizing the preprocessing for-794

mats for the document and the summary, such that795

the encoder does not need to deal with different796

inputs. We surround every sentence with a CLS797

and SEP token. The end of the summary is still798

marked with an end of summary token to tell the799

decoder to stop.800

We did not reach the results of the preprocessing801

used in BERTSUMEXTABS with this format. In-802

terestingly, the generated summaries consistently803

contained fewer sentences on average. We conjec-804

ture that this could be an artefact of decoding with805

beam search, but cannot substantiate this presump-806

tion.807

Contextual sentence representations. In our808

model, we encode summary sentences individually,809

without self-attention to the surrounding sentences.810

It is not possible to allow representations to see fu-811

ture ground-truth sentences, as that would serve as812

a shortcut for the model and prevent proper learn-813

ing of the task. While it is possible for the sentence814

representations to encode information of previous815

summary sentences, experiments showed no im-816

provements with this change.817

Attention to the sentence representation. A 818

different way to integrate the sentence represen- 819

tation in the word generator is to perform attention 820

over it. We experimented with two methods. On the 821

one hand, we specialized an attention head to ex- 822

clusively look at the sentence representation, while 823

the others attend to the source document. This 824

method performed slightly worse than the base 825

model on ROUGE scores. On the other hand, we 826

concatenated the sentence representation to the en- 827

coder outputs, and jointly attended to it in the word 828

generator’s cross-attention. When analyzing the 829

attention weights, we realized that the sentence 830

representation was mostly ignored. As a remedy, 831

we separated training into two phases. In the first 832

phase, we trained our model without attention to 833

the document, such that the sentence planner gets 834

a chance to learn meaningful sentence representa- 835

tions and is not ignored from the start. We then 836

finetuned the model with attention to the document. 837

While this increased the attention weights of the 838

sentence representation substantially, the results 839

did not improve over the baseline with the same 840

number of total training steps (pretraining and fine- 841

tuning combined). 842

B Preprocessing on Curation Corpus 843

We follow the instructions in the Curation Corpus 844

Github repository7 to download the 40000 article- 845

summary pairs. After filtering examples where 846

either the article or the summary are empty, we 847

are left with 39911 examples. We split them into 848

train/validation/test sets as 80/10/10 to arrive at 849

split sizes of 31929/3991/3991. 850

Since the text extractor from the HTML web- 851

sites inserts a lot of newlines (probably due to the 852

website layout), we replace them with spaces in 853

order to not split sentences in the middle. 854

We use the NLTK tokenizer (Bird et al., 2009) 855

to split the article text into sentences. We then pre- 856

process the data in the same way as Liu and Lapata 857

(2019) processed the CNN/DailyMail corpus, ex- 858

cept that we do not filter examples based on the 859

number of tokens in the article or summary, but 860

instead keep them irrespective of their length. 861

We are happy to assist with reconstructing the 862

dataset as we have used it in this paper. 863

7https://github.com/CurationCorp/curation-corpus
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Model ROUGE

R-1 R-2 R-L

BSEA (Liu and Lapata, 2019) 42.95 (0.14) 17.67 (0.19) 37.46 (0.21)
BSEA (our implementation) 43.37 (0.37) 17.92 (0.17) 37.73 (0.31)

Sentence planner 44.40 (0.14) 18.31 (0.13) 38.69 (0.10)

Table 8: Comparison of generated with reference summaries on Curation Corpus. Mean and std (in brackets) over
5 runs. Best result in bold.

Model Sentences Novel Bigrams Corefs

Number Length

Gold summaries 3.46 28.0 69.22% 0.441

BSEA (Liu and Lapata, 2019) 2.73 (0.09) 27.3 (0.5) 36.77% (0.94%) 0.267 (0.011)
BSEA (our implementation) 2.76 (0.10) 28.5 (0.8) 37.29% (1.32%) 0.283 (0.026)

Sentence planner 3.15 (0.11) 28.2 (0.5) 39.29% (2.00%) 0.289 (0.023)

Table 9: Properties of generated summaries on Curation Corpus. Mean and std (in brackets) over 5 runs.

Dataset / Model Focus Coherence

CNN/DailyMail 0.654 0.298
Curation Corpus 0.848 0.563

BSEA (Liu and Lapata, 2019) 0.838 0.547
BSEA (our implementation) 0.850 0.563

Sentence planner 0.859 0.562

Table 10: Focus and coherence scores of SUM-QE.
Models are trained and evaluated on Curation Corpus.
Mean over 5 runs.

C Full Results on Curation Corpus864

Tables 8 and 9 show the mean and standard devia-865

tion (in brackets) over 5 runs of each model, with866

random seeds from 1 to 5.867

D SUM-QE Evaluation868

In line with our evaluations, SUM-QE (Xenouleas869

et al., 2019) evaluates the linguistic quality of a870

summary. In particular, the two qualities focus and871

coherence are desired properties for natural sum-872

maries. However, we found the metric to give non-873

discriminative scores to all summaries (including874

reference summaries). We therefore only provide875

the results for completeness.876

SUM-QE automatically evaluates summaries877

with regard to linguistic quality questions asked878

in the DUC-05/06/07 tasks. We select the quali-879

ties regarding focus and coherence, described as880

follows:881

Q4 – Focus. The summary should have a focus;882

sentences should only contain information that is883

related to the rest of the summary. 884

Q5 – Structure and Coherence. The summary 885

should be well-structured and well-organized. The 886

summary should not just be a heap of related infor- 887

mation, but should build from sentence to sentence 888

to a coherent body of information about a topic. 889

The raters were asked to judge summaries on 890

an integer scale of 1 to 5, which is normalized to 891

(0, 1) by the SUM-QE model. It is trained on the 892

raters’ judgments and achieves high correlations 893

on a held-out test set. We use the model trained on 894

DUC-05/06 (and evaluated on DUC-07) with the 895

"multi-task-5" setting, producing one output per 896

linguistic quality. 897

Table 10 holds the SUM-QE scores for the refer- 898

ence summaries of CNN/DailyMail and Curation 899

Corpus. There is an evident difference in scores 900

between the two datasets, with Curation Corpus’s 901

summaries being judged more focused and coher- 902

ent by the model. When comparing the scores of 903

Curation Corpus’s reference summaries with the 904

models’ scores, there are only minimal differences. 905

The same holds true for a comparison between mod- 906

els. We therefore decided to remove this evaluation 907

from the main text of the paper. 908

E Example Summaries 909

Tables 11 and 12 show example summaries from 910

the Curation Corpus validation set for the sentence 911

planner and BERTSUMEXTABS (our implementa- 912

tion), alongside the source article and the reference 913

summary. 914
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Source article
Theresa May’s plans for a post-Brexit trade deal with the US will be put at risk if she retains EU
protections for food and drink such as Champagne and Parma Ham, a senior ally of Donald Trump has
warned. The Telegraph has learned that Liam Fox, the International Trade Secretary, has written to
David Davis, the Brexit Secretary, warning him not to concede over the issue during negotiations with
Brussels. During a recent visit to the US he was told by Paul Ryan, a senior Republican and Speaker
of the House of Representatives, that the UK must be able to "diverge" from EU protected status
standards to reach a free trade deal. The US produces its own Feta, Parmesan and Champagne and has
strongly resisted attempts to ban the sale of American products in the past. Its refusal to compromise
on the issue led to the collapse of a major trade deal between the EU and the US. However Michel
Barnier, the EU’s chief Brexit negotiator, is demanding that Britain must recognise 3,300 protected
food and drink products after Brexit. The products are protected under a system of "geographical
indications", meaning that they cannot be produced elsewhere.

Reference summary
A post-Brexit trade deal with the US may be jeopardised if the UK continues to recognise EU protected
status standards for food and drink. The US has resisted calls to adopt protections for products such
as feta, Parmesan and Champagne, and would expect the UK to also diverge from them. However, the
EU’s chief Brexit negotiator, Michel Barnier, says Britain must retain the protections.

Candidate summary (sentence planner)
uk prime minister theresa may ’ s plans for a post - brexit trade deal with the us will be placed at
risk if she retains eu protections for food and drink products such as champagne and parma ham ,
according to unnamed sources . european trade secretary liam fox has written to david davis , the eu ’
s chief brexit negotiator michel barnier , to call for britain to recognise 3 , 300 protected food and
drinks products after brexit . the uk produces its own feta , parmesan and champagne imports , and
called for the uk to " diverge " from eu protected status standards .

Candidate summary (BERTSUMEXTABS, our implementation)
brexit negotiator liam fox has written to david davis , the uk ’ s brexit negotiator , calling for britain
to recognise 3 , 300 protected food and drink products after brexit . the uk produces its own feta ,
parmesan and champagne and has strongly opposed attempts to ban the sale of us products in the past
. michel barnier , the eu ’ s chief brexit negotiator for brexit negotiator michel barnier is calling for
the uk to recognise three , 300 products following brexit .

Table 11: Hard example from the Curation Corpus. The sentence planner correctly calls "a senior ally of Donald
Trump" an "unnamed source". It nicely includes the Speaker of the House’s demand to "diverge" from EU stan-
dards as a call by the US. It gets confused with the International Trade Secretary, the Brexit Secretary and the
EU’s chief Brexit negotiator. It also mistakes the US for the UK when talking about a country producing its own
products. BERTSUMEXTABS does these same mistakes, but gets even more confused with the Brexit negotiator.
It repeats the call to recognize the protected products by the Brexit negotiator, and misses the main point of the
article, namely that this issue jeopardizes the post-Brexit trade deal.
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Source article
FILE PHOTO: U.S. President Donald Trump talks to reporters as he heads to the Marine One
helicopter to depart the White House for travel to Florida in Washington, U.S. October 8, 2018.
REUTERS/Jonathan Ernst/File PhotoWASHINGTON (Reuters) - President Donald Trump’s adminis-
tration on Thursday for a second time asked the U.S. Supreme Court to put the brakes on a lawsuit filed
by young activists who have accused the U.S. government of ignoring the perils of climate change. In
the lawsuit, 21 activists, ages 11 to 22, said federal officials violated their rights to due process under
the U.S. Constitution by failing to adequately address carbon pollution such as emissions from the
burning of fossil fuels. The lawsuit was filed in 2015 against former President Barack Obama and
government agencies in a federal court in Eugene, Oregon. Both the Obama and Trump administration
have failed in efforts to have the lawsuit thrown out. On July 30, the high court rejected an earlier
application by the Trump administration, saying it was premature. Eugene, Oregon-based federal
judge Ann Aiken on Monday issued another ruling allowing the case to move forward to trial on
Oct. 29 if either the high court or the San Francisco-based 9th U.S. Circuit Court of Appeals do not
intervene. Reporting by Lawrence Hurley; Editing by Will Dunham

Reference summary
President Trump’s administration on 18 October failed in its attempt to halt a climate change lawsuit
filed in 2015 by 21 activists, aged between 11 and 22, which accuses the US government of ignoring
the risks of climate change. The Obama administration had also attempted unsuccessfully to have the
lawsuit thrown out, while the high court rejected a previous application by the Trump administration
to have the case dismissed on 30 July. The latest ruling from the Supreme Court means the case can
proceed to trial on 29 October if neither the high court or Court of Appeals intervenes.

Candidate summary (sentence planner)
president donald trump ’ s administration has asked the us supreme court to put the brakes on a
lawsuit filed by young activists who have accused the us government of ignoring the perils of climate
change . in 2015 , 21 activists claimed federal officials violated their rights to due process under the
constitution by failing to address carbon pollution , including emissions from the burning of fossil
fuels . on 30 july , the high court rejected an earlier application by the trump administration , saying it
was premature .

Candidate summary (BERTSUMEXTABS, our implementation)
president donald trump ’ s administration for a second time has asked the us supreme court to put the
brakes on a lawsuit filed by 21 activists who have accused the us government of ignoring the perils
of climate change . the case , which was filed in 2015 against former president barack obama and
government agencies in a federal court in oregon , is being brought forward by the high court on 30
july .

Table 12: Example from the Curation Corpus. The sentence planner manages to get all facts correct, and sum-
marizes the important content very well by removing phrases such as "on Thursday for a second time", "U.S." in
"U.S. Constitution" and "adequately" in "adequately address". It also uses the information that the lawsuit was
filed in 2015 from a later sentence to include in the sentence about the origin of the lawsuit. BERTSUMEXTABS
also nicely fuses information in its first generated sentence. In the second one, however, it mistakenly believes that
the case will be handled on July 30, instead of October 29. It is again a bit shorter on information compared to the
sentence planner.
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