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Abstract

Earning calls are among important resources001
for investors and analysts for updating their002
price targets. Firms usually publish corre-003
sponding transcripts soon after earnings events.004
However, raw transcripts are often too long005
and miss the coherent structure. To enhance006
the clarity, analysts write well-structured re-007
ports for some important earnings call events008
by analyzing them, requiring time and effort.009
In this paper, we propose TATSum (Template-010
Aware aTtention model for Summarization),011
a generalized neural summarization approach012
for structured report generation, and evaluate013
its performance in the earnings call domain. A014
large corpus is built with thousands of tran-015
scripts and reports, collected from historical016
earnings events. Within the neural summariza-017
tion system, we first generate a candidate set of018
reports from the corpus as potential soft tem-019
plates. Then, we employ an encoder model020
with margin-ranking loss to rank the candidate021
set and select the best quality template. Finally,022
the transcript and the selected soft template are023
used as input in a seq2seq framework for re-024
port generation. Empirical results on the earn-025
ings call dataset show that our model signif-026
icantly outperforms state-of-the-art models in027
terms of informativeness and structure.028

1 Introduction029

Earnings Calls, conference calls held by public030

companies to disclose their performance of a spe-031

cific period, are key resources in providing sig-032

nals for financial analysts’ decision-making pro-033

cess. Analysts, investors, and the mass media can034

learn about a company’s financial results, operation035

details, and future guidance by listening to these036

conference calls. Previous works have highlighted037

the importance of earnings calls in modeling an-038

alysts’ behavior (Frankel et al., 1999; Keith and039

Stent, 2019).040

As nowadays firms disclose more and more infor-041

mation (Dyer et al., 2017), earnings call transcripts042

Figure 1: Example of an analyst report. Generated re-
ports of our system follow the same structure.

are usually longer and contain more information 043

than before, resulting in challenges in efficiently 044

analyzing these unstructured documents and detect- 045

ing informative facts. Some financial analysts write 046

well-structured reports (Figure 1) (Refinitiv) for 047

earnings calls after attending the event or reading 048

the transcript. However, writing such reports usu- 049

ally takes time and effort. In addition, reports are 050

not available for every company and event. There- 051

fore, generating earnings reports quickly and au- 052

tomatically can fill the gap for no-report-available 053

conferences and strongly accelerate the research 054

process in the financial industry. 055

To fulfill this goal, we aim to develop an effective 056

text summarization system to automatically gener- 057

ate reports with a hierarchical structure. Text sum- 058

marization (Maybury, 1999), as an important field 059

of Natural Language Processing, attracts consid- 060

erable interest from researchers. Various datasets 061

for summarization tasks have been built, most of 062

which contains small to middle-sized document 063

and short summary, e.g., CNN/Daily Mail (Her- 064

mann et al., 2015; Nallapati et al., 2016), WikiHow 065

(Koupaee and Wang, 2018), Reddit (Kim et al., 066

2019), etc. Researchers design innovative archi- 067

tectures and benchmark the model performance on 068

these mainstream datasets, yet extending summa- 069

rization framework to the domain of earnings call 070
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transcripts, has never been explored.071

In contrast to popular summarization tasks, struc-072

tured earnings report generation has several chal-073

lenges due to the special properties of data. First,074

earnings call conferences usually take a few hours,075

and transcripts contain thousands of words. This076

feature makes it impossible for popular pre-trained077

models such as BERT (Devlin et al., 2019) and078

BART (Lewis et al., 2020) to provide high-quality079

summaries since these approaches partition the080

long documents into smaller sequences within 512081

tokens to meet the input limit, resulting in loss082

of cross-partition information. Second, generated083

reports are required to be clearly organized and084

well-formatted. In addition to summarization, it085

is important for the model to recognize and out-086

put the explicit logical structure of the earnings087

call presentation. To the best of our knowledge,088

the structure quality of generated summaries from089

lengthy documents, in terms of logic and format,090

has rarely been examined in literature.091

In this paper, we formally conceptualize report092

generation as an extension of summarization tasks093

and propose a novel approach, Template-Aware094

aTtention model for Summarization (TATSum), to095

produce hierarchically-structured reports. Inspired096

by traditional template-based summarization (Zhou097

and Hovy, 2004), and soft template-based sentence098

summarization (Cao et al., 2018), we use historical099

reports as soft templates to provide supplemental100

structure information for a summarization system.101

To deal with the long sequence problem, we102

leverage the advantage of Long-Documents-103

Transformer (Longformer) (Beltagy et al., 2020),104

which reduces the complexity of the self-attention105

mechanism in Transformers (Vaswani et al., 2017)106

and allow for longer input sequences.107

We collect historical earnings call transcripts and108

reports, and divide them into speaker sections with109

fewer words. The combination of a transcript sec-110

tion and a report section serves as an individual111

data point in the corpus. Our proposed framework112

consists of three modules as illustrated in Figure 2:113

(i) Candidate Generation, which generates a set of114

potential soft template candidates for a transcript115

section, (ii) Candidate Ranking, which ranks can-116

didates through a Siamese-architected (Bromley117

et al., 1993) Longformer Encoder and selects the118

candidate with the highest rank as the final soft119

template for the transcript, and (iii) Report Gen-120

eration, which generates the report using the soft121

template together with the raw transcript through a 122

Longformer-Encoder-Decoder (LED) model (Belt- 123

agy et al., 2020). Figure 1 illustrates the structure 124

of reports generated by our algorithm. 125

Figure 2: Flowchart of the report generation system

We evaluate the proposed framework on hun- 126

dreds of earnings call events. Experiments show 127

that TATSum significantly outperforms the state- 128

of-the-art summarization models in terms of infor- 129

mativeness, accuracy, format, and logical structure. 130

Besides, extensive experiments are conducted to 131

analyze the effect of different components of our 132

framework on the performance of the model. 133

The contributions of this work are summarized 134

as follows: 135

• We introduce a section-based soft template 136

as supplemental information to the encoder- 137

decoder framework to generate structured and 138

readable earnings call reports. 139

• We design a Siamese-architected Longformer 140

encoder for better template selection and fur- 141

ther improve the quality of generated reports. 142

• Our algorithm adopts and extends the LED 143

to provide template-aware summarization 144

and overcome the challenge of long sequence 145

encoding and long document generation. 146

• We conduct experiments on earnings call 147

transcripts for the first time and evaluate 148

the impact of different components of the 149

proposed system. Results show that TATSum 150

achieves superior performance compared 151

with state-of-the-art baselines. 152

The paper is organized as follows: in Section 153

2, we review the relevant prior literature. Section 154

3 presents the novel architecture of TATSum. We 155

conduct extensive experiments on the earnings call 156

dataset and analyze the results in Section 4. Section 157

5 concludes the paper and provides future direc- 158

tions. 159

2 Related Work 160

Earlier studies of neural abstractive summarization 161

employ encoder-decoder architecture to generate 162
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a shorter version of a sentence (Rush et al., 2015).163

Nallapati et al. (2016) extend previous work to sum-164

marize documents with more than one sentence165

using hierarchical attention. A variety of studies166

focus on building advanced attention mechanism167

for better summarization, e.g., convolutional atten-168

tion (Chopra et al., 2016), graph-based attention169

(Tan et al., 2017), Bottom-up attention (Gehrmann170

et al., 2018), etc. See et al. (2017) propose a hybrid171

pointer-generator network and a coverage mecha-172

nism to keep track of already-summarized words.173

Paulus et al. (2018) introduce a deep reinforced174

model with a novel intra-attention mechanism and175

show improved performance for long document176

summarization.177

Recently, pre-trained language models, which178

are trained to learn contextual representations179

from large-scale corpora, have been proved to be180

successful in summarization tasks. Popular pre-181

trained models like BERT (Devlin et al., 2019) and182

BART (Lewis et al., 2020) are adopted to build183

summarization-specific architecture. BERTSum184

(Liu and Lapata, 2019) proposes a novel document-185

level BERT-based encoder and an auto-regressive186

decoder with Trigram Blocking techniques and187

shows strong performance in both extractive and ab-188

stractive summarization. Aghajanyan et al. (2020)189

integrate BART with the Robust Representations190

through Regularized Finetuning (R3F) method to191

perform better fine-tuning for pre-trained models192

and achieve the state-of-the-art performance on193

CNN/Daily Mail.194

Longformer (Beltagy et al., 2020) significantly195

reduces the time and space complexity of the at-196

tention mechanism and allows for much longer197

input sequences. It achieves this goal by replac-198

ing the self-attention in traditional Transformers199

(Vaswani et al., 2017) with windowed attention200

and introducing new task-oriented global atten-201

tion. Longformer-Encoder-Decoder (LED) (Belt-202

agy et al., 2020), a variant of Longformer, is also203

introduced for supporting long document seq2seq204

tasks. LED-large 16K, a BART-pretrained LED205

model with no additional pretraining, outperformed206

Bigbird summarization (Zaheer et al., 2020), a mod-207

ified Transformer for long sequences with Pegasus208

pretraining (Zhang et al., 2020), and achieved the209

state-of-the-art performance on arXiv dataset (Co-210

han et al., 2018). In this paper, LED is adopted as211

the base model and a strong baseline benchmark.212

In the domain of earnings calls, there is limited213

work exploring the potential of applying text 214

summarization techniques. Cardinaels et al. 215

(2019) generate an automatic summary for 216

earnings releases using off-the-shelf unsupervised 217

summarization methods such as KLSum (Haghighi 218

and Vanderwende, 2009), LexRank (Erkan and 219

Radev, 2004), etc., and conduct experiments to 220

analyze the impact of automatic and management 221

summaries on the investors’ judgment. However, 222

comprehensive experiments on the performance 223

of summarization techniques are missing. In this 224

work, we develop a novel summarization algorithm 225

for report generation, provide extensive experi- 226

ments on the earnings call dataset, and compare 227

it with the state-of-the-art models in the literature. 228

An important feature of our system is to generate 229

well-structured and formatted reports. Template- 230

based summarization (Zhou and Hovy, 2004) is a 231

traditional technique to summarize sentences. With 232

a manually designed incomplete sentence template, 233

the method fills the template using some input text, 234

following pre-defined rules. This method can guar- 235

antee that the output sentence follows a specific 236

format. However, constructing templates for long 237

documents and large-scale datasets still remains 238

challenging and requires domain knowledge. Cao 239

et al. (2018) extended the template-based summa- 240

rization and introduced a soft template, which is a 241

summary sentence selected from the training set, 242

to resolve this issue. Re3Sum (Cao et al., 2018) 243

selects the soft template through an Information 244

Retrieval (IR) platform and jointly learns template 245

quality as well as generates the summary through 246

a seq2seq framework. In this paper, we select his- 247

torical reports from the corpus and form candidate 248

sets. 249

To further improve template quality, our Can- 250

didate Ranking Module is inspired by MatchSum 251

(Zhong et al., 2020). Zhong et al. (2020) formu- 252

lates extractive summarization as a semantic text 253

matching problem, and architect a Siamese-BERT 254

network with margin-ranking loss to select the best 255

candidate summary. 256

3 Method 257

Our goal is to generate hierarchically structured 258

reports from long documents. The automatic gen- 259

eration system, TATSum, consists of three mod- 260

ules: Candidate Generation, Candidate Ranking, 261

and Report Generation. Given an earnings call 262

transcript, we divide it into different sections and 263
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consider each section as an input sequence T . This264

helps in the tractability of the summarization pro-265

cess by considering fewer tokens and results in266

well-structured reports since each section usually267

follows a coherent structure that is different from268

others. Similarly, human-written reports are di-269

vided into sections, R, and mapped to the docu-270

ment sections in the training phase.271

For each document section T , the Candidate272

Generation module filters a candidate set of top i273

soft templates CT := {R1, · · · , Ri} from a built274

corpus. We rank the candidate set CT using the275

Candidate Ranking module to select the best soft276

template R̂T to use. Finally, in the Report Gener-277

ation module, the best soft template R̂T and the278

raw document section T together are encoded into279

hidden states. A decoder takes the combination of280

encoded hidden states as well as decoder inputs281

to generate the abstractive report. Figure 3 illus-282

trates Candidate Ranking and Candidate Genera-283

tion modules. The three modules will be described284

in detail in the following subsections.285

3.1 Candidate Generation286

This module finds soft templates from the training287

corpus and forms a set of candidates. Our corpus,288

P , includes all document sections T and report289

sections R in the training set. To find the set of290

template candidates, we consider two assumptions:291

(i) similar transcripts should have similar reports,292

and (ii) a good template should give instructions293

about the format while not adding misleading294

information.295

Since our dataset includes thousands of docu-296

ments, we use an information retrieval technique,297

TF-IDF, to efficiently find the set of candidates.298

TF-IDF is a traditional unsupervised learning tech-299

nique that can convert document text into a bag of300

words and quickly vectorize it. Since transcripts301

and reports have different styles, we consider the302

similarity between transcripts following assump-303

tion (i). Therefore, we first compute the similarity304

between section T and the other transcript sections305

in the corpus P using TF-IDF cosine similarity.306

Then, we select the top 5 scored document sections307

and use their corresponding reports in the corpus308

to form the candidate set C = {R1, · · · , R5}.309

Although TF-IDF is a quick and easy method310

to calculate similarities and select candidates, it311

may not always provide candidates that resemble312

gold reports. We test this hypothesis by calculating313

the ROUGE average score (average of ROUGE- 314

1, ROUGE-2, and ROUGE-l F1 score) between a 315

sample of candidate sets and the human-written re- 316

ports. We find that only 17.4% of the best TF-IDF 317

candidates have the highest ROUGE average score 318

among all the candidates, indicating that TF-IDF is 319

not sufficient for retrieving the best soft-template. 320

Thus, we add the second module, Candidate Rank- 321

ing, to rank the candidate set and predict the best 322

candidate that has the highest ROUGE score with 323

the human-written report. 324

3.2 Candidate Ranking 325

The purpose of this module is to precisely select the 326

best template, i.e., the template which has the high- 327

est ROUGE score with the human-written report. 328

To train this module, we first calculate the ROUGE 329

average score between each candidate template in 330

the candidate set, CT , and the human-written re- 331

port, R∗T , and store them in the descending order 332

in C̃T as a label. 333

Inspired by Siamese network (Bromley et al., 334

1993) and Siamese-BERT structure (Zhong et al., 335

2020), we construct a Siamese-Longformer archi- 336

tecture to rank the candidate set. Longformer, a.k.a 337

Long-Document Transformer,(Beltagy et al., 2020) 338

is a model that successfully addresses the input 339

length limitation of Transformer-based models by 340

reducing the time complexity of the attention mech- 341

anism. The Siamese-Longformer model consists of 342

two Longformer encoders with tight weights and 343

a cosine similarity layer to compute comparable 344

output vectors. One Longformer network encodes 345

transcripts, T , and the other one encodes reports,R. 346

We use the encoded hidden state of the bos_token 347

‘< s >’ from the final Longformer layer to extract 348

the transcript and report embedding vectors, eT and 349

eR, respectively. The cosine-similarity layer con- 350

nects these representation vectors and obtains the 351

semantic similarity between the two documents. 352

S(T,R) = cosine(eT , eR) 353

If two documents have a higher ROUGE score, 354

we expect them to have higher predicted semantic 355

similarity. 356

We use margin-ranking loss to update the 357

weights, and the model is expected to predict the 358

correct rank of the candidate set based on the 359

ROUGE score. Specifically, the loss function is 360

designed from the following criteria. 361

• Human-written report should be the most 362

semantically similar with the transcript 363
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Figure 3: Illustration of different components of the Candidate Ranking module (left) and the Report Generation
module (right). First, we learn parameters of the Longformer layers (LFL) in the Candidate Ranking to rank
existing reports in the candidate set. Then, we encode the representations of the transcript and the top candidate
using Longformer Encoder and decode their embeddings to generate reports.

• A candidate template that has a higher rouge364

score with the human-written report should365

have a higher semantical similarity with the366

transcript367

Based on the first criteria, we derive the construc-368

tion of the first loss function:369

L1 =
∑
R∈CT

max(0, S(T,R)− S(T,R∗T ))370

Where R∗T is the human-written report, and371

R ∈ CT denotes all the candidate templates for372

transcript T .373

Based on the second criteria, we use sorted candi-374

date set ranking in C̃T and design a margin-ranking375

loss as follows:376

L2 =
∑

{i,j}∈C̃T
max(0, S(T,RT

j )− S(T,RT
i )377

+(j − i)ε) (i < j)378

where Ri denotes the candidate template ranked379

i, and ε is a hyperparameter that distinguishes be-380

tween candidates with good, i, and bad, j, rankings.381

As described in criteria 2, the construction aims to382

measure the loss of any mis-ranking within the383

candidate set. Finally, the margin-ranking loss we384

use to train the Siamese-Longformer network is a385

combination of the two loss functions.386

LR = L1 + L2 (1)387

During the inference phase, the model will predict388

the similarity scores of candidates in the candidate389

set, and the candidate with the highest score will be390

set as the best soft template R̂T for the transcript391

for further report generation. 392

R̂T := argmax
R∈CT

S(T,R) 393

3.3 Report Generation 394

This module aims to generate the final report based 395

on the soft template and the transcript. To generate 396

an abstractive report, we design a soft-template- 397

based encoder-decoder architecture to conduct 398

seq2seq generation. We employ a pretrained LED 399

as the base encoder-decoder model. The model 400

takes a transcript section T and a soft template R̂T 401

as the input. They are tokenized and encoded by a 402

Longformer encoder respectively. Similar to mod- 403

ule 2, we use the encoded hidden state of ‘< s >’ 404

from the top Longformer layer as the representa- 405

tion of the corresponding transcript/template in the 406

semantic space. The hidden states of the encoded 407

transcript Ht and template Hs are concatenated as 408

the final encoding outputs. 409

HT = LongformerEncoder(T ) 410

HR̂T = LongformerEncoder(R̂T ) 411

He = [HT ;HR̂T ] 412

The combined encoding outputs are then fed into 413

a Longformer Decoder, and the decoding hidden 414

state, Hd, is generated auto-regressively at position 415

k based on the previous report tokens yk−1: 416

Hd,k = Decoder(Hd,k−1, yk−1, He) 417

Finally, a softmax layer predicts the probability 418

vector of words at position k in the report: 419

Pk = softmax(Hd,kW
P ), 420
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where WP is learnable matrix. In cases in which421

the template includes too many tokens, we truncate422

it to ensure that we get more information from the423

transcript than the template since the main content424

in the report should source from the transcript, and425

templates should only provide information for for-426

matting. Generally, the tokens from a template are427

about 25% of the transcript.428

The whole encoder-decoder architecture is fine-429

tuned during training. A beam search is conducted430

during the test to generate an abstractive report that431

has the highest overall probability.432

R = Beam(P1,P2, ...,Pk)433

3.4 Optimization434

We use two sets of loss functions in generating the435

reports of the earning calls. In Candidate Ranking436

module, we aim to train the parameters of Siamese-437

Longformer to find the best template in the can-438

didate set. We use ranking loss, LR, defined in439

equation (1) to achieve this goal.440

In Report Generation module, our learning goal441

is to maximize the negative log-likelihood of the442

probability of the actual report.443

LG = −
∑
k

log(pyk)444

We optimize the two losses separately over their445

respective parameters using gradient-based ap-446

proaches (see section 4.4 for more details).447

4 Experiment448

We evaluate TATSum on Earnings call reports. We449

aim to answer the two following questions.450

• Q1: How does TATSum perform compared to451

the state-of-the-art summarization systems?452

• Q2: How do different components of TATSum453

such as soft-template and template ranking454

affect the performance of the model?455

4.1 Dataset456

We collected transcripts and human-written reports457

for 3655 earnings call events from 2017 to 2020,458

hosted by 1948 listed companies. Most selected459

companies are listed in NYSE or NASDAQ. For460

better generalization of our model, we also select a461

few companies from world-wide exchanges, such462

as TSX, FWB, Euronext, etc. These transcripts and463

reports are divided into 11141 sections, and each464

section is treated as an individual sequence. The465

statistics of our dataset is shown in Table 1. In our 466

dataset, transcript lengths are significantly larger 467

than the majority of public datasets such as Daily 468

Mail and NYTimes and similar to long documents 469

such as arXiv (Cohan et al., 2018). However, the 470

reports in our dataset are substantially longer than 471

the summaries of existing datasets, indicating that 472

instead of doing lots of condensation, analysts tend 473

to retain most of the information by paraphrasing 474

and restructuring the oral transcript. Therefore, 475

generating long sequences in natural language with 476

a well-organized structure, is the most critical part 477

for automatic earnings call reports. 478

Dataset #docs avg.doc. avg. report
length(words) length (words)

Docs 3655 3621 2524

Table 1: Statistics of the built earnings call dataset

We retain about 20% of the dataset as valida- 479

tion and use the rest for training. To prevent data 480

leakage or utilizing future information, we test the 481

performance of TATSum on 2000 transcript sec- 482

tions extracted from 666 earnings events in late 483

2020 and early 2021. In this setting, when gen- 484

erating the report for an earnings call transcript, 485

TATSum only leverage a historical report that is 486

available prior to the event. The entire dataset is 487

shown in Table 2. 488

Dataset Transcripts/Reports Sections
Training Set 2929 8786
Validation Set 726 2265
Test Set 666 2000

Table 2: Document and section number information of
the dataset

4.2 Evaluation Metrics 489

We employ ROUGE (Lin and Hovy, 2003) as 490

the automatic evaluation metric. ROUGE has 491

been used as the standard evaluation metric for 492

machine translation and automatic summarization 493

since 2004. The commonly adopted ROUGE met- 494

rics are ROUGE-1 (overlap of unigram), ROUGE- 495

2 (overlap of bigrams), and ROUGE-l (Longest 496

Common Subsequence, or LCS). In the Candidate 497

Ranking module, we use an average of ROUGE-1, 498

ROUGE-2, and ROUGE-3 F1 score as labels for 499

training. Through testing of the whole system, we 500

calculate and report all these metrics. 501

ROUGE can measure how much information 502
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the generated report maintains compared with503

the human-written report. However, correctness,504

which can not be captured by ROUGE, is another505

important metric for the generated report in the do-506

main of earnings calls. We manually review the507

rendered result, especially focusing on important508

financial statistics, trends, and sentiment, to evalu-509

ate whether it reports correct information from the510

earnings call.511

4.3 Baselines512

To compare the performance of our proposed model513

with others, we consider following state-of-the-art514

neural summarization baselines:515

• BERTSum(Liu and Lapata, 2019): It uses516

document-level BERT-based encoder and an517

autoregressive decoder with Trigram Blocking518

for summarization.519

• LED (Beltagy et al., 2020): It modifies the520

self-attention in Transformers with windowed521

attention for long document summarization.522

4.4 Implementation Details523

We implement our model with Pytorch and adopt524

the pretrained LED-base model in Candidate Rank-525

ing and Report Generation modules. In particu-526

lar, we use LEDs with 768 hidden state and 3072527

feed-forward layer dimensionality. We use dropout528

with probability 0.1 and a customized Adam op-529

timizer (Kingma and Ba, 2014) (β1 = 0.9, β2 =530

0.999, ε = 1e − 9) during training. The learn-531

ing rates through optimization follow Noam decay532

scheme (Vaswani et al., 2017) with a warmup step533

of 500 and are set to be:534

1. Module Candidate Ranking:535

Lr = 3e−3∗min(step−0.5, step∗wrm.steps−1.5)536

2. Module Report Generation:537

Lr = 3e−5∗min(step−0.5, step∗wrm.steps−1.5)538

We save a model checkpoint every 5000 steps539

and choose the best-performed checkpoint on the540

validation set. In Report Generation module, we541

use the Block Trigram technique (Liu and Lapata,542

2019) to reduce potential redundancy. However, we543

find this approach ineffective for some reports and544

observe repetitions of words with punctuations in545

between. Therefore, we add a new Block Tri-word546

method that forces the decoder never to output the547

exact same three words in a predicted sequence548

with all punctuations deleted. When the decoder549

creates the same three words that exist in the pre-550

vious pure word sequence, the probability of the 551

beam is set to be 0. 552

Although we employ the Longformer architec- 553

ture to deal with long sequences, we still face mem- 554

ory challenges in Report Generation module when 555

the earnings call section is too long. To increase 556

the performance for earnings call sections of arbi- 557

trary length, we divide a long section into several 558

short sub-sections and generate reports for each 559

sub-section. We then combine each sub-section 560

and report them in the same hierarchical structure. 561

This method is proved to perform well when a tran- 562

script section exceeds the sequence length limit. 563

We search for best hyperparameters for base- 564

lines, and use optimization schemes suggested by 565

authors. Models are trained on Tesla-V100 GPUs. 566

4.5 Experiment Results 567

Table 3 shows the ROUGE F1 score for different 568

methods. 569

Metrics ROUGE1 ROUGE2 ROUGE-l
BERTSum 36.89 22.16 35.40
LED 65.17 53.07 64.93
TATSum 76.20 61.89 75.94

Table 3: Results of TATSum and Baseline models

Due to the small input length limit in the archi- 570

tecture of BertSum, it is not able to generate fluent 571

and readable reports by partitioning the long docu- 572

ment and combining the output. Taking advantage 573

of the modified attention mechanism and huge se- 574

quence length limit, LED, on the contrary, achieves 575

quite good performance. All three Rouge-F scores 576

are above 50, indicating that reports generated by 577

LED can extract critical information from earnings 578

presentations similar to human beings. By adding 579

a precisely-selected soft template to LED, our pro- 580

posed system, TATSum, boosts the report quality 581

even more, with a significant improvement over the 582

performance of LED by 17%. 583

As discussed in section 4.1, earnings call re- 584

ports contain much more words than summaries 585

in popular summarization datasets. Therefore, the 586

ROUGE scores are higher than those observed from 587

CNN/DM and arXiv correspondingly. In order to 588

guarantee the quality of generated reports for real 589

use cases, in terms of structure and accuracy, we 590

further conduct manual checking on a small sample 591

of earnings events selected from the test set. We 592

read their transcripts, human-written reports, and 593

automatic report generated by TATSum, and com- 594
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pare the content in these documents. Generated595

reports mimic the analyst report well in format and596

structure. For information accuracy, we primarily597

focus on the numbers, trends, and sentiment in gen-598

erated reports. Our observation shows that except599

in a few cases where some parts are missing, infor-600

mation within the generated report is accurate and601

coherent.602

4.6 Ablation Study603

In this section, we analyze variants of our model604

to find the effect of different components on the605

model performance. We consider variations as fol-606

lows: (1) No template: we remove the first and607

second modules and consider a pure LED archi-608

tecture for report generation and (2) NoRanking:609

We forgo Candidate Ranking module and use the610

template with the highest TF-IDF cosine similarity611

in Candidate Generation.612

In table 4, we report the average ROUGE score613

of generated reports on the test set under different614

experiment setting.615

Metrics ROUGE1 ROUGE2 ROUGE-l
NoTemplate 65.17 53.07 64.93
NoRanking 75.90 61.48 75.63
TATSum 76.20 61.89 75.94

Table 4: Ablation study of design choices in TATSum

Effect of soft template: To capture the impact616

of soft templates on the performance of our model,617

we compare the results of NoTemplate and NoRank-618

ing. As illustrated in Table 4, A soft template619

based seq2seq model achieves significantly higher620

ROUGE scores. In addition to boosting the per-621

formance, incorporating the template stabalize the622

training process and results in faster convergence,623

indicating that the model can better learn to write624

reports in a quicker manner with supplemental in-625

formation. We also compare several reports gen-626

erated by the two models, and find that the report627

of NoRanking model has better format and logi-628

cal structure. The report is clearly organized, with629

good heading levels and correct serial numbers. In630

contrast, the report of NoTemplate contains more631

incorrect indentations, levels, and serial numbers.632

It proves that adding a soft template do provide the633

model with more information on how to write a634

report logically like a human.635

Effect of template ranking: Similarly, results636

of NoRanking and TATSum are compared to study637

whether ranking the candidate set of templates im-638

proves the performance. As shown in Table 4, rank- 639

ing the candidate set and selecting a template of bet- 640

ter quality can slightly increase all three ROUGE 641

scores of generated reports. It is worth mentioning 642

that unlike adding a soft template, ranking the can- 643

didate set can take a longer time for labeling and 644

training. For labeling, ROUGE scores need to be 645

calculated for each template in the candidate set 646

with the human-written report, and all data points 647

in the training set should be labeled. For training, 648

a Siamese-Longformer encoder is constructed to 649

predict the rank of the candidate set, which also re- 650

quires long training and validation time. Therefore, 651

further thoughts on balancing the tradeoff between 652

performance and training time are necessary for 653

each dataset. 654

5 Conclusions 655

This paper proposes an innovative neural summa- 656

rization system, TATSum, with three modules, Can- 657

didate Generation, Candidate Ranking, and Report 658

Generation, to generate structured reports automat- 659

ically. In Candidate Generation module, we build a 660

corpus of historical documents and reports, and for 661

each document, we generate a candidate set using 662

quick and easy similarity-based criteria. The can- 663

didate set is then ranked in the Candidate Ranking 664

module, following the predicted result of an en- 665

coder model with margin-ranking loss. We choose 666

the candidate with the highest rank as the soft tem- 667

plate. In the final Report Generation module, we 668

encode both template and document into hidden 669

states and feed the combined hidden states into a de- 670

coder to generate the report. Extensive experiments 671

are conducted on the earning call dataset and show 672

that our model can generate reports with high infor- 673

mativeness (ROUGE) and high accuracy (numbers, 674

trends, etc.). We also prove that adding a template 675

can significantly improve the quality of the gen- 676

erated report, and finely selecting a template with 677

good quality can increase performance even more. 678

We mainly test TATSum on automatic report 679

generation for earnings call events. However, the 680

advantage of Longformer architecture for long se- 681

quence tasks, as well as the significant power of 682

adding soft templates for structured document gen- 683

eration, can extend our proposed framework to vari- 684

ous domains, e.g., medical report, employee annual 685

review, call center record, etc. We would like to 686

take advantage of this proved architecture to ex- 687

plore more potential in structured report generation. 688
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