Template-aware Attention Model for Earnings Call Report Generation

Anonymous EMNLP submission

Abstract

Earning calls are among important resources
for investors and analysts for updating their
price targets. Firms usually publish corre-
sponding transcripts soon after earnings events.
However, raw transcripts are often too long
and miss the coherent structure. To enhance
the clarity, analysts write well-structured re-
ports for some important earnings call events
by analyzing them, requiring time and effort.
In this paper, we propose TATSum (Template-
Aware aTtention model for Summarization),
a generalized neural summarization approach
for structured report generation, and evaluate
its performance in the earnings call domain. A
large corpus is built with thousands of tran-
scripts and reports, collected from historical
earnings events. Within the neural summariza-
tion system, we first generate a candidate set of
reports from the corpus as potential soft tem-
plates. Then, we employ an encoder model
with margin-ranking loss to rank the candidate
set and select the best quality template. Finally,
the transcript and the selected soft template are
used as input in a seq2seq framework for re-
port generation. Empirical results on the earn-
ings call dataset show that our model signif-
icantly outperforms state-of-the-art models in
terms of informativeness and structure.

1 Introduction

Earnings Calls, conference calls held by public
companies to disclose their performance of a spe-
cific period, are key resources in providing sig-
nals for financial analysts’ decision-making pro-
cess. Analysts, investors, and the mass media can
learn about a company’s financial results, operation
details, and future guidance by listening to these
conference calls. Previous works have highlighted
the importance of earnings calls in modeling an-
alysts’ behavior (Frankel et al., 1999; Keith and
Stent, 2019).

As nowadays firms disclose more and more infor-
mation (Dyer et al., 2017), earnings call transcripts

I. Presentation Section 1
1. Heading Level 1
1. Bullet point 1.1
2. Bullet point 1.2
1. Supporting sentence 1.2.1
2. Supporting sentence 1.2.2
3. Bullet point 1.3
2. Heading Level 2

Figure 1: Example of an analyst report. Generated re-
ports of our system follow the same structure.

are usually longer and contain more information
than before, resulting in challenges in efficiently
analyzing these unstructured documents and detect-
ing informative facts. Some financial analysts write
well-structured reports (Figure 1) (Refinitiv) for
earnings calls after attending the event or reading
the transcript. However, writing such reports usu-
ally takes time and effort. In addition, reports are
not available for every company and event. There-
fore, generating earnings reports quickly and au-
tomatically can fill the gap for no-report-available
conferences and strongly accelerate the research
process in the financial industry.

To fulfill this goal, we aim to develop an effective
text summarization system to automatically gener-
ate reports with a hierarchical structure. Text sum-
marization (Maybury, 1999), as an important field
of Natural Language Processing, attracts consid-
erable interest from researchers. Various datasets
for summarization tasks have been built, most of
which contains small to middle-sized document
and short summary, e.g., CNN/Daily Mail (Her-
mann et al., 2015; Nallapati et al., 2016), WikiHow
(Koupaee and Wang, 2018), Reddit (Kim et al.,
2019), etc. Researchers design innovative archi-
tectures and benchmark the model performance on
these mainstream datasets, yet extending summa-
rization framework to the domain of earnings call

transcripts, has never been explored.

In contrast to popular summarization tasks, struc-
tured earnings report generation has several chal-
lenges due to the special properties of data. First,
earnings call conferences usually take a few hours,
and transcripts contain thousands of words. This
feature makes it impossible for popular pre-trained
models such as BERT (Devlin et al., 2019) and
BART (Lewis et al., 2020) to provide high-quality
summaries since these approaches partition the
long documents into smaller sequences within 512
tokens to meet the input limit, resulting in loss
of cross-partition information. Second, generated
reports are required to be clearly organized and
well-formatted. In addition to summarization, it
is important for the model to recognize and out-
put the explicit logical structure of the earnings
call presentation. To the best of our knowledge,
the structure quality of generated summaries from
lengthy documents, in terms of logic and format,
has rarely been examined in literature.

In this paper, we formally conceptualize report
generation as an extension of summarization tasks
and propose a novel approach, Template-Aware
aTtention model for Summarization (TATSum), to
produce hierarchically-structured reports. Inspired
by traditional template-based summarization (Zhou
and Hovy, 2004), and soft template-based sentence
summarization (Cao et al., 2018), we use historical
reports as soft templates to provide supplemental
structure information for a summarization system.
To deal with the long sequence problem, we
leverage the advantage of Long-Documents-
Transformer (Longformer) (Beltagy et al., 2020),
which reduces the complexity of the self-attention
mechanism in Transformers (Vaswani et al., 2017)
and allow for longer input sequences.

We collect historical earnings call transcripts and
reports, and divide them into speaker sections with
fewer words. The combination of a transcript sec-
tion and a report section serves as an individual
data point in the corpus. Our proposed framework
consists of three modules as illustrated in Figure 2:
(i) Candidate Generation, which generates a set of
potential soft template candidates for a transcript
section, (ii) Candidate Ranking, which ranks can-
didates through a Siamese-architected (Bromley
et al., 1993) Longformer Encoder and selects the
candidate with the highest rank as the final soft
template for the transcript, and (iii) Report Gen-
eration, which generates the report using the soft

template together with the raw transcript through a
Longformer-Encoder-Decoder (LED) model (Belt-
agy et al., 2020). Figure 1 illustrates the structure
of reports generated by our algorithm.

Candidate Candidate Report

Corpus || N t
- generalion B Ranking Generation
— > [=
% Candidate
Template Set

Transcript
L

Top ranked

Template Report

Figure 2: Flowchart of the report generation system

We evaluate the proposed framework on hun-
dreds of earnings call events. Experiments show
that TATSum significantly outperforms the state-
of-the-art summarization models in terms of infor-
mativeness, accuracy, format, and logical structure.
Besides, extensive experiments are conducted to
analyze the effect of different components of our
framework on the performance of the model.

The contributions of this work are summarized
as follows:

* We introduce a section-based soft template
as supplemental information to the encoder-
decoder framework to generate structured and
readable earnings call reports.

* We design a Siamese-architected Longformer
encoder for better template selection and fur-
ther improve the quality of generated reports.

* Our algorithm adopts and extends the LED
to provide template-aware summarization
and overcome the challenge of long sequence
encoding and long document generation.

* We conduct experiments on earnings call
transcripts for the first time and evaluate
the impact of different components of the
proposed system. Results show that TATSum
achieves superior performance compared
with state-of-the-art baselines.

The paper is organized as follows: in Section
2, we review the relevant prior literature. Section
3 presents the novel architecture of TATSum. We
conduct extensive experiments on the earnings call
dataset and analyze the results in Section 4. Section
5 concludes the paper and provides future direc-
tions.

2 Related Work

Earlier studies of neural abstractive summarization
employ encoder-decoder architecture to generate

a shorter version of a sentence (Rush et al., 2015).
Nallapati et al. (2016) extend previous work to sum-
marize documents with more than one sentence
using hierarchical attention. A variety of studies
focus on building advanced attention mechanism
for better summarization, e.g., convolutional atten-
tion (Chopra et al., 2016), graph-based attention
(Tan et al., 2017), Bottom-up attention (Gehrmann
etal., 2018), etc. See et al. (2017) propose a hybrid
pointer-generator network and a coverage mecha-
nism to keep track of already-summarized words.
Paulus et al. (2018) introduce a deep reinforced
model with a novel intra-attention mechanism and
show improved performance for long document
summarization.

Recently, pre-trained language models, which
are trained to learn contextual representations
from large-scale corpora, have been proved to be
successful in summarization tasks. Popular pre-
trained models like BERT (Devlin et al., 2019) and
BART (Lewis et al., 2020) are adopted to build
summarization-specific architecture. BERTSum
(Liu and Lapata, 2019) proposes a novel document-
level BERT-based encoder and an auto-regressive
decoder with Trigram Blocking techniques and
shows strong performance in both extractive and ab-
stractive summarization. Aghajanyan et al. (2020)
integrate BART with the Robust Representations
through Regularized Finetuning (R3F) method to
perform better fine-tuning for pre-trained models
and achieve the state-of-the-art performance on
CNN/Daily Mail.

Longformer (Beltagy et al., 2020) significantly
reduces the time and space complexity of the at-
tention mechanism and allows for much longer
input sequences. It achieves this goal by replac-
ing the self-attention in traditional Transformers
(Vaswani et al., 2017) with windowed attention
and introducing new task-oriented global atten-
tion. Longformer-Encoder-Decoder (LED) (Belt-
agy et al., 2020), a variant of Longformer, is also
introduced for supporting long document seq2seq
tasks. LED-large 16K, a BART-pretrained LED
model with no additional pretraining, outperformed
Bigbird summarization (Zaheer et al., 2020), a mod-
ified Transformer for long sequences with Pegasus
pretraining (Zhang et al., 2020), and achieved the
state-of-the-art performance on arXiv dataset (Co-
han et al., 2018). In this paper, LED is adopted as
the base model and a strong baseline benchmark.

In the domain of earnings calls, there is limited

work exploring the potential of applying text
summarization techniques. Cardinaels et al.
(2019) generate an automatic summary for
earnings releases using off-the-shelf unsupervised
summarization methods such as KLSum (Haghighi
and Vanderwende, 2009), LexRank (Erkan and
Radev, 2004), etc., and conduct experiments to
analyze the impact of automatic and management
summaries on the investors’ judgment. However,
comprehensive experiments on the performance
of summarization techniques are missing. In this
work, we develop a novel summarization algorithm
for report generation, provide extensive experi-
ments on the earnings call dataset, and compare
it with the state-of-the-art models in the literature.

An important feature of our system is to generate
well-structured and formatted reports. Template-
based summarization (Zhou and Hovy, 2004) is a
traditional technique to summarize sentences. With
a manually designed incomplete sentence template,
the method fills the template using some input text,
following pre-defined rules. This method can guar-
antee that the output sentence follows a specific
format. However, constructing templates for long
documents and large-scale datasets still remains
challenging and requires domain knowledge. Cao
et al. (2018) extended the template-based summa-
rization and introduced a soft template, which is a
summary sentence selected from the training set,
to resolve this issue. Re3Sum (Cao et al., 2018)
selects the soft template through an Information
Retrieval (IR) platform and jointly learns template
quality as well as generates the summary through
a seq2seq framework. In this paper, we select his-
torical reports from the corpus and form candidate
sets.

To further improve template quality, our Can-
didate Ranking Module is inspired by MatchSum
(Zhong et al., 2020). Zhong et al. (2020) formu-
lates extractive summarization as a semantic text
matching problem, and architect a Siamese-BERT
network with margin-ranking loss to select the best
candidate summary.

3 Method

Our goal is to generate hierarchically structured
reports from long documents. The automatic gen-
eration system, TATSum, consists of three mod-
ules: Candidate Generation, Candidate Ranking,
and Report Generation. Given an earnings call
transcript, we divide it into different sections and

consider each section as an input sequence 7. This
helps in the tractability of the summarization pro-
cess by considering fewer tokens and results in
well-structured reports since each section usually
follows a coherent structure that is different from
others. Similarly, human-written reports are di-
vided into sections, R, and mapped to the docu-
ment sections in the training phase.

For each document section T°, the Candidate
Generation module filters a candidate set of top ¢
soft templates CT' := {Ry,---, R;} from a built
corpus. We rank the candidate set C” using the
Candidate Ranking module to select the best soft
template RT to use. Finally, in the Report Gener-
ation module, the best soft template RT and the
raw document section 1" together are encoded into
hidden states. A decoder takes the combination of
encoded hidden states as well as decoder inputs
to generate the abstractive report. Figure 3 illus-
trates Candidate Ranking and Candidate Genera-
tion modules. The three modules will be described
in detail in the following subsections.

3.1 Candidate Generation

This module finds soft templates from the training
corpus and forms a set of candidates. Our corpus,
P, includes all document sections 7 and report
sections R in the training set. To find the set of
template candidates, we consider two assumptions:
(1) similar transcripts should have similar reports,
and (ii) a good template should give instructions
about the format while not adding misleading
information.

Since our dataset includes thousands of docu-
ments, we use an information retrieval technique,
TF-IDF, to efficiently find the set of candidates.
TF-IDF is a traditional unsupervised learning tech-
nique that can convert document text into a bag of
words and quickly vectorize it. Since transcripts
and reports have different styles, we consider the
similarity between transcripts following assump-
tion (i). Therefore, we first compute the similarity
between section 7" and the other transcript sections
in the corpus P using TF-IDF cosine similarity.
Then, we select the top 5 scored document sections
and use their corresponding reports in the corpus
to form the candidate set C = {Ry,--- , R5}.

Although TF-IDF is a quick and easy method
to calculate similarities and select candidates, it
may not always provide candidates that resemble
gold reports. We test this hypothesis by calculating

the ROUGE average score (average of ROUGE-
1, ROUGE-2, and ROUGE-I F1 score) between a
sample of candidate sets and the human-written re-
ports. We find that only 17.4% of the best TF-IDF
candidates have the highest ROUGE average score
among all the candidates, indicating that TF-IDF is
not sufficient for retrieving the best soft-template.
Thus, we add the second module, Candidate Rank-
ing, to rank the candidate set and predict the best
candidate that has the highest ROUGE score with
the human-written report.

3.2 Candidate Ranking

The purpose of this module is to precisely select the
best template, i.e., the template which has the high-
est ROUGE score with the human-written report.
To train this module, we first calculate the ROUGE
average score between each candidate template in
the candidate set, C”, and the human-written re-
port, R*T', and store them in the descending order
in CT as a label.

Inspired by Siamese network (Bromley et al.,
1993) and Siamese-BERT structure (Zhong et al.,
2020), we construct a Siamese-Longformer archi-
tecture to rank the candidate set. Longformer, a.k.a
Long-Document Transformer,(Beltagy et al., 2020)
is a model that successfully addresses the input
length limitation of Transformer-based models by
reducing the time complexity of the attention mech-
anism. The Siamese-Longformer model consists of
two Longformer encoders with tight weights and
a cosine similarity layer to compute comparable
output vectors. One Longformer network encodes
transcripts, 7', and the other one encodes reports, R.
We use the encoded hidden state of the bos_token
‘< s >’ from the final Longformer layer to extract
the transcript and report embedding vectors, er and
eR, respectively. The cosine-similarity layer con-
nects these representation vectors and obtains the
semantic similarity between the two documents.

S(T, R) = cosine(er, er)
If two documents have a higher ROUGE score,
we expect them to have higher predicted semantic
similarity.

We use margin-ranking loss to update the
weights, and the model is expected to predict the
correct rank of the candidate set based on the
ROUGE score. Specifically, the loss function is
designed from the following criteria.

* Human-written report should be the most
semantically similar with the transcript

v

Transcript
; LF LFL L
= » Predict I
: — LFL LFL LFL
s R
| : i | SEX]
: (===
: . Longformer Decoder
Candidate Template B
: Set :

Candidate Ranking

Longformer Encoder

Report Generation

Figure 3: Illustration of different components of the Candidate Ranking module (left) and the Report Generation
module (right). First, we learn parameters of the Longformer layers (LFL) in the Candidate Ranking to rank
existing reports in the candidate set. Then, we encode the representations of the transcript and the top candidate
using Longformer Encoder and decode their embeddings to generate reports.

* A candidate template that has a higher rouge
score with the human-written report should
have a higher semantical similarity with the
transcript

Based on the first criteria, we derive the construc-
tion of the first loss function:
Ly =) max(0,S(T,R) — S(T,R'T))
ReCT

Where R*" is the human-written report, and
R € CT denotes all the candidate templates for
transcript 7.

Based on the second criteria, we use sorted candi-
date set ranking in C" and design a margin-ranking
loss as follows:

Ly= > wmax(0,S(T,R]) - S(T,R})

{i,j}eCT
+(—1e) (i <J)

where R; denotes the candidate template ranked
1, and € is a hyperparameter that distinguishes be-
tween candidates with good, ¢, and bad, j, rankings.
As described in criteria 2, the construction aims to
measure the loss of any mis-ranking within the
candidate set. Finally, the margin-ranking loss we
use to train the Siamese-Longformer network is a
combination of the two loss functions.

Lr =1L+ Ly (1)
During the inference phase, the model will predict
the similarity scores of candidates in the candidate

set, and the candidate with the highest score will be
set as the best soft template 27 for the transcript

for further report generation.

RT := argmax S(T, R)
ReCcT

3.3 Report Generation

This module aims to generate the final report based
on the soft template and the transcript. To generate
an abstractive report, we design a soft-template-
based encoder-decoder architecture to conduct
seq2seq generation. We employ a pretrained LED
as the base encoder-decoder model. The model
takes a transcript section 7' and a soft template RT
as the input. They are tokenized and encoded by a
Longformer encoder respectively. Similar to mod-
ule 2, we use the encoded hidden state of ‘< s >’
from the top Longformer layer as the representa-
tion of the corresponding transcript/template in the
semantic space. The hidden states of the encoded
transcript H; and template Hg are concatenated as
the final encoding outputs.

Hp = Long formerEncoder(T)

Hpr = Long former Encoder(RT)
H. = [Hr; H)
The combined encoding outputs are then fed into
a Longformer Decoder, and the decoding hidden

state, H, is generated auto-regressively at position
k based on the previous report tokens yx_1:

Hgj, = Decoder(Hg g—1,Yr—1, He)
Finally, a softmax layer predicts the probability
vector of words at position k in the report:
P, = softmaa:(Hd,kWP),

where W7 is learnable matrix. In cases in which
the template includes too many tokens, we truncate
it to ensure that we get more information from the
transcript than the template since the main content
in the report should source from the transcript, and
templates should only provide information for for-
matting. Generally, the tokens from a template are
about 25% of the transcript.

The whole encoder-decoder architecture is fine-
tuned during training. A beam search is conducted
during the test to generate an abstractive report that
has the highest overall probability.

R= Beam(Pl,Pg, ,Pk)

3.4 Optimization

We use two sets of loss functions in generating the
reports of the earning calls. In Candidate Ranking
module, we aim to train the parameters of Siamese-
Longformer to find the best template in the can-
didate set. We use ranking loss, Lg, defined in
equation (1) to achieve this goal.

In Report Generation module, our learning goal
is to maximize the negative log-likelihood of the
probability of the actual report.

Lo =—)_log(py,)
k
We optimize the two losses separately over their
respective parameters using gradient-based ap-
proaches (see section 4.4 for more details).

4 Experiment

We evaluate TATSum on Earnings call reports. We
aim to answer the two following questions.

* QI: How does TATSum perform compared to
the state-of-the-art summarization systems?

* Q2: How do different components of TATSum
such as soft-template and template ranking
affect the performance of the model?

4.1 Dataset

We collected transcripts and human-written reports
for 3655 earnings call events from 2017 to 2020,
hosted by 1948 listed companies. Most selected
companies are listed in NYSE or NASDAQ. For
better generalization of our model, we also select a
few companies from world-wide exchanges, such
as TSX, FWB, Euronext, etc. These transcripts and
reports are divided into 11141 sections, and each
section is treated as an individual sequence. The

statistics of our dataset is shown in Table 1. In our
dataset, transcript lengths are significantly larger
than the majority of public datasets such as Daily
Mail and NYTimes and similar to long documents
such as arXiv (Cohan et al., 2018). However, the
reports in our dataset are substantially longer than
the summaries of existing datasets, indicating that
instead of doing lots of condensation, analysts tend
to retain most of the information by paraphrasing
and restructuring the oral transcript. Therefore,
generating long sequences in natural language with
a well-organized structure, is the most critical part
for automatic earnings call reports.

Dataset #docs avg.doc. avg. report
length(words) length (words)
Docs 3655 3621 2524

Table 1: Statistics of the built earnings call dataset

We retain about 20% of the dataset as valida-
tion and use the rest for training. To prevent data
leakage or utilizing future information, we test the
performance of TATSum on 2000 transcript sec-
tions extracted from 666 earnings events in late
2020 and early 2021. In this setting, when gen-
erating the report for an earnings call transcript,
TATSum only leverage a historical report that is
available prior to the event. The entire dataset is
shown in Table 2.

Dataset Transcripts/Reports ~ Sections
Training Set 2929 8786
Validation Set 726 2265
Test Set 666 2000

Table 2: Document and section number information of
the dataset

4.2 Evaluation Metrics

We employ ROUGE (Lin and Hovy, 2003) as
the automatic evaluation metric. ROUGE has
been used as the standard evaluation metric for
machine translation and automatic summarization
since 2004. The commonly adopted ROUGE met-
rics are ROUGE-1 (overlap of unigram), ROUGE-
2 (overlap of bigrams), and ROUGE-I (Longest
Common Subsequence, or LCS). In the Candidate
Ranking module, we use an average of ROUGE-1,
ROUGE-2, and ROUGE-3 F1 score as labels for
training. Through testing of the whole system, we
calculate and report all these metrics.

ROUGE can measure how much information

the generated report maintains compared with
the human-written report. However, correctness,
which can not be captured by ROUGE, is another
important metric for the generated report in the do-
main of earnings calls. We manually review the
rendered result, especially focusing on important
financial statistics, trends, and sentiment, to evalu-
ate whether it reports correct information from the
earnings call.

4.3 Baselines

To compare the performance of our proposed model
with others, we consider following state-of-the-art
neural summarization baselines:

* BERTSum(Liu and Lapata, 2019): It uses
document-level BERT-based encoder and an
autoregressive decoder with Trigram Blocking
for summarization.

* LED (Beltagy et al., 2020): It modifies the
self-attention in Transformers with windowed
attention for long document summarization.

4.4 Implementation Details

We implement our model with Pytorch and adopt
the pretrained LED-base model in Candidate Rank-
ing and Report Generation modules. In particu-
lar, we use LEDs with 768 hidden state and 3072
feed-forward layer dimensionality. We use dropout
with probability 0.1 and a customized Adam op-
timizer (Kingma and Ba, 2014) (5, = 0.9, 82 =
0.999,¢ = le — 9) during training. The learn-
ing rates through optimization follow Noam decay
scheme (Vaswani et al., 2017) with a warmup step
of 500 and are set to be:
1. Module Candidate Ranking:

Lr = 3e—3*min(step "5, stepxwrm.steps™19)
2. Module Report Generation:
Lr = 3e—5*min(step_0'5, step*wrm.steps_l's)

We save a model checkpoint every 5000 steps
and choose the best-performed checkpoint on the
validation set. In Report Generation module, we
use the Block Trigram technique (Liu and Lapata,
2019) to reduce potential redundancy. However, we
find this approach ineffective for some reports and
observe repetitions of words with punctuations in
between. Therefore, we add a new Block Tri-word
method that forces the decoder never to output the
exact same three words in a predicted sequence
with all punctuations deleted. When the decoder
creates the same three words that exist in the pre-

vious pure word sequence, the probability of the
beam is set to be 0.

Although we employ the Longformer architec-
ture to deal with long sequences, we still face mem-
ory challenges in Report Generation module when
the earnings call section is too long. To increase
the performance for earnings call sections of arbi-
trary length, we divide a long section into several
short sub-sections and generate reports for each
sub-section. We then combine each sub-section
and report them in the same hierarchical structure.
This method is proved to perform well when a tran-
script section exceeds the sequence length limit.

We search for best hyperparameters for base-
lines, and use optimization schemes suggested by
authors. Models are trained on Tesla-V100 GPUs.

4.5 Experiment Results

Table 3 shows the ROUGE F1 score for different
methods.

Metrics ROUGE1 ROUGE2 ROUGE-]
BERTSum 36.89 22.16 35.40
LED 65.17 53.07 64.93
TATSum 76.20 61.89 75.94

Table 3: Results of TATSum and Baseline models

Due to the small input length limit in the archi-
tecture of BertSum, it is not able to generate fluent
and readable reports by partitioning the long docu-
ment and combining the output. Taking advantage
of the modified attention mechanism and huge se-
quence length limit, LED, on the contrary, achieves
quite good performance. All three Rouge-F scores
are above 50, indicating that reports generated by
LED can extract critical information from earnings
presentations similar to human beings. By adding
a precisely-selected soft template to LED, our pro-
posed system, TATSum, boosts the report quality
even more, with a significant improvement over the
performance of LED by 17%.

As discussed in section 4.1, earnings call re-
ports contain much more words than summaries
in popular summarization datasets. Therefore, the
ROUGE scores are higher than those observed from
CNN/DM and arXiv correspondingly. In order to
guarantee the quality of generated reports for real
use cases, in terms of structure and accuracy, we
further conduct manual checking on a small sample
of earnings events selected from the test set. We
read their transcripts, human-written reports, and
automatic report generated by TATSum, and com-

pare the content in these documents. Generated
reports mimic the analyst report well in format and
structure. For information accuracy, we primarily
focus on the numbers, trends, and sentiment in gen-
erated reports. Our observation shows that except
in a few cases where some parts are missing, infor-
mation within the generated report is accurate and
coherent.

4.6 Ablation Study

In this section, we analyze variants of our model
to find the effect of different components on the
model performance. We consider variations as fol-
lows: (1) No template: we remove the first and
second modules and consider a pure LED archi-
tecture for report generation and (2) NoRanking:
We forgo Candidate Ranking module and use the
template with the highest TF-IDF cosine similarity
in Candidate Generation.

In table 4, we report the average ROUGE score
of generated reports on the test set under different
experiment setting.

Metrics ROUGE1 ROUGE2 ROUGE-]
NoTemplate 65.17 53.07 64.93
NoRanking 75.90 61.48 75.63
TATSum 76.20 61.89 75.94

Table 4: Ablation study of design choices in TATSum

Effect of soft template: To capture the impact
of soft templates on the performance of our model,
we compare the results of NoTemplate and NoRank-
ing. As illustrated in Table 4, A soft template
based seq2seq model achieves significantly higher
ROUGE scores. In addition to boosting the per-
formance, incorporating the template stabalize the
training process and results in faster convergence,
indicating that the model can better learn to write
reports in a quicker manner with supplemental in-
formation. We also compare several reports gen-
erated by the two models, and find that the report
of NoRanking model has better format and logi-
cal structure. The report is clearly organized, with
good heading levels and correct serial numbers. In
contrast, the report of NoTemplate contains more
incorrect indentations, levels, and serial numbers.
It proves that adding a soft template do provide the
model with more information on how to write a
report logically like a human.

Effect of template ranking: Similarly, results
of NoRanking and TATSum are compared to study
whether ranking the candidate set of templates im-

proves the performance. As shown in Table 4, rank-
ing the candidate set and selecting a template of bet-
ter quality can slightly increase all three ROUGE
scores of generated reports. It is worth mentioning
that unlike adding a soft template, ranking the can-
didate set can take a longer time for labeling and
training. For labeling, ROUGE scores need to be
calculated for each template in the candidate set
with the human-written report, and all data points
in the training set should be labeled. For training,
a Siamese-Longformer encoder is constructed to
predict the rank of the candidate set, which also re-
quires long training and validation time. Therefore,
further thoughts on balancing the tradeoff between
performance and training time are necessary for
each dataset.

5 Conclusions

This paper proposes an innovative neural summa-
rization system, TATSum, with three modules, Can-
didate Generation, Candidate Ranking, and Report
Generation, to generate structured reports automat-
ically. In Candidate Generation module, we build a
corpus of historical documents and reports, and for
each document, we generate a candidate set using
quick and easy similarity-based criteria. The can-
didate set is then ranked in the Candidate Ranking
module, following the predicted result of an en-
coder model with margin-ranking loss. We choose
the candidate with the highest rank as the soft tem-
plate. In the final Report Generation module, we
encode both template and document into hidden
states and feed the combined hidden states into a de-
coder to generate the report. Extensive experiments
are conducted on the earning call dataset and show
that our model can generate reports with high infor-
mativeness (ROUGE) and high accuracy (numbers,
trends, etc.). We also prove that adding a template
can significantly improve the quality of the gen-
erated report, and finely selecting a template with
good quality can increase performance even more.

We mainly test TATSum on automatic report
generation for earnings call events. However, the
advantage of Longformer architecture for long se-
quence tasks, as well as the significant power of
adding soft templates for structured document gen-
eration, can extend our proposed framework to vari-
ous domains, e.g., medical report, employee annual
review, call center record, etc. We would like to
take advantage of this proved architecture to ex-
plore more potential in structured report generation.

References

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2020. Better fine-tuning by reducing representa-
tional collapse. arXiv preprint arXiv:2008.03156.

1z Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Sickinger, and Roopak Shah. 1993. Signature veri-
fication using a" siamese" time delay neural network.
Advances in neural information processing systems,
6:737-744.

Zigiang Cao, Wenjie Li, Furu Wei, Sujian Li, et al.
2018. Retrieve, rerank and rewrite: Soft template
based neural summarization. Association for Com-
putational Linguistics (ACL).

Eddy Cardinaels, Stephan Hollander, and Brian J
White. 2019. Automatic summarization of earnings
releases: attributes and effects on investors’ judg-
ments. Review of Accounting Studies, 24(3):860—
890.

Sumit Chopra, Michael Auli, and Alexander M Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93-98.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 615-621.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Travis Dyer, Mark Lang, and Lorien Stice-Lawrence.
2017. The evolution of 10-k textual disclosure: Ev-
idence from latent dirichlet allocation. Journal of
Accounting and Economics, 64(2-3):221-245.

Giines Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence re-

search, 22:457-479.

Richard Frankel, Marilyn Johnson, and Douglas J Skin-
ner. 1999. An empirical examination of conference
calls as a voluntary disclosure medium. Journal of
Accounting Research, 37(1):133-150.

Sebastian Gehrmann, Yuntian Deng, and Alexander M
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4098—4109.

Aria Haghighi and Lucy Vanderwende. 2009. Ex-
ploring content models for multi-document summa-
rization. In Proceedings of human language tech-
nologies: The 2009 annual conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 362-370.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Proceedings of the 28th Inter-
national Conference on Neural Information Process-
ing Systems-Volume 1, pages 1693-1701.

Katherine A Keith and Amanda Stent. 2019. Modeling
financial analysts’ decision making via the pragmat-
ics and semantics of earnings calls. arXiv preprint
arXiv:1906.02868.

Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim.
2019. Abstractive summarization of reddit posts
with multi-level memory networks. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2519-2531.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mahnaz Koupaee and William Yang Wang. 2018. Wik-
ithow: A large scale text summarization dataset.
arXiv preprint arXiv:1810.09305.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003 Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 150-157.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3721-3731.

Mani Maybury. 1999. Advances in automatic text sum-
marization. MIT press.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gucehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
rmns and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280-290.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representations.

Refinitiv. https://www.refinitiv.com/en/
financial-data.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379-389.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083.

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017.
Abstractive document summarization with a graph-
based attentional neural model. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1171-1181.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30:5998-6008.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. In NeurlPS.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328-11339. PMLR.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuan-Jing Huang. 2020. Extrac-
tive summarization as text matching. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6197-6208.

Liang Zhou and Eduard Hovy. 2004. Template-filtered
headline summarization. In Text summarization
branches out, pages 56—60.

10

https://www.refinitiv.com/en/financial-data
https://www.refinitiv.com/en/financial-data
https://www.refinitiv.com/en/financial-data

