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Abstract

Current abstractive summarization systems001
outperform their extractive counterparts, but002
their widespread adoption is inhibited by the003
inherent lack of interpretability. Extractive004
summarization systems, though interpretable,005
suffer from redundancy and possible lack of006
coherence. To achieve the best of both worlds,007
we propose EASE, an extractive-abstractive008
framework that generates concise abstractive009
summaries that can be traced back to an ex-010
tractive summary. Our framework can be ap-011
plied to any evidence-based text generation012
problem and can accommodate various pre-013
trained models in its simple architecture. We014
use the Information Bottleneck principle to015
jointly train the extraction and abstraction in016
an end-to-end fashion. Inspired by previous017
research that humans use a two-stage frame-018
work to summarize long documents (Jing and019
McKeown, 2000), our framework first extracts020
a pre-defined amount of evidence spans and021
then generates a summary using only the ev-022
idence. Using automatic and human evalua-023
tions, we show that the generated summaries024
are better than strong extractive and extractive-025
abstractive baselines.026

1 Introduction027

Pretrained sequence-to-sequence language models028

such as BART (Lewis et al., 2020), T5 (Raffel et al.,029

2019) and their variants have achieved state-of-the-030

art results on various tasks such as summarization,031

machine translation, and data2text tasks (Zhang032

et al., 2019b; Kale and Rastogi, 2020). Despite the033

higher fidelity compared with models without pre-034

training for tasks such as summarization (Maynez035

et al., 2020), the lack of interpretability in abstrac-036

tive generation remains an obstacle to their broader037

adoption. Extractive summarization systems, on038

the other hand, have the advantage of being inter-039

pretable but are too restrictive by forcing the out-040

put to be spans from the document, reducing their041

Source Document:
(CNN)Mike Rowe is coming to a river near you. "Sometimes, you hear about a per-
son who makes you feel good about humanity, but bad about yourself," Rowe says.
On Thursday’s episode of "Somebody’s Gotta Do It," Rowe meets up with Chad
Pregracke, the founder of Living Lands & Waters, who does just that. Pregracke
wants to clean up the nation’s rivers one piece of detritus at a time. His quota? Always
"more." Read Mike Rowe’s Facebook post on how to break our litter habit. Since
he founded the nonprofit in 1998 at the ripe age of 23, Pregracke and more than
87,000 volunteers have collected 8.4 million pounds of trash from U.S. waterways.
Those efforts helped him earn the 2013 CNN Hero of the Year Award, along
with numerous other honors. "Wherever you are, no matter if there’s a stream, a
creek, a lake, whatever, that needs to be cleaned up, you can do it. Just organize
it and do it," he told CNN’s Anderson Cooper after his win. Pregracke also gives
Rowe a tour of the 150-foot, solar-powered barge that the Living Lands & Waters
staff calls home during lengthy cleanups. The part-home, part-office, part-dumpster
has seven bedrooms, two bathrooms, a classroom and a kitchen – and just happens
to be made from a recycled strip club. According to the organization’s latest annual
report, Pregracke has made it his mission in 2015 to remove 500,000 more pounds of
trash. If you’d like to help achieve this goal, visit his website to learn how to help:
LivingLandsAndWaters.org/Get-Involved/.
Summary: Mike Rowe meets Chad Pregracke, the founder of Living Lands & Wa-
ters. The nonprofit has collected 8.4 million pounds of trash from U.S. waterways.
Pregracke was named the 2013 CNN Hero of the Year.

Figure 1: An example of a summary and its evidence
(highlighted) as generated by our framework.

naturalness, coherence, and conciseness. In this 042

paper, we propose EASE, a novel framework that 043

combines the two systems to produce natural sum- 044

maries that can be traced back to an interpretable 045

extractive summary. Our general framework can 046

accommodate differnet pretrained models and suit- 047

able for any evidence-based text generation task. 048

The existing extractive-abstractive systems can 049

be divided into three main categories: 1- Rely- 050

ing on attention for interpretability (Hsu et al., 051

2018). Due to the probabilistic nature of the at- 052

tention mechanism, it falls short of providing us- 053

able evidence; 2- Providing word-level evidence for 054

the generated summaries (Gehrmann et al., 2018). 055

Though more useful than attention, this evidence is 056

too granular to be useful for humans; 3- Training 057

the content selector separately using pseudo labels 058

or other heuristics (Liu and Lapata, 2019; Pilault 059

et al., 2020). In contrast, we seek a theoretically- 060

grounded model that can learn the evidence extrac- 061

tion end-to-end. 062

Perhaps the closest work to ours is Zhao et al. 063

(2020) focusing on long-document summarization 064

by training a joint extractive-abstractive model via 065

weak supervision. Though a complicated and spe- 066
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cific framework, it achieves poor results on bench-067

marks such as CNN/DM. EASE on the other hand,068

is based on the Information Bottleneck (IB) prin-069

ciple (Tishby et al., 1999), which formalizes the070

trade-off between the size of the extracted evidence071

and the information provided for the generation072

of the final output. While this method has been073

successfully adopted by prior work for a simpler074

discriminative task (Paranjape et al., 2020), we075

extend it to generative tasks where the extracted076

evidence can be viewed as a coarse version of the077

final abstractive output.078

We leverage pretrained language models that079

first extract the necessary evidence from the source080

document (extractor) and then, using only the ex-081

tracted evidence spans, generate the final output082

(abstractor). Fig. 1 shows an example of the evi-083

dences and summary generated by our system.084

Our main contributions are as follows:085

• We propose EASE, a general-purpose086

theoretically-grounded Extractive-Abstractive087

framework for extractive-abstractive text088

generation that is jointly trained in an089

end-to-end fashion. We apply EASE to text090

summarization.091

• Our abstractor generates the summary using092

only the extracted evidence which can be093

viewed as an extractive summary. We propose094

a new sparsity budget parameter that controls095

the trade-off between the length of the evi-096

dence spans (i.e., the extractive summary)and097

the final abstractive output’s quality098

• Our results show that EASE extracts evidence099

better than the baselines without significantly100

sacrificing the quality of the generated sum-101

mary, compared with the state-of-the-art fully102

abstractive systems on the CNN/DailyMail103

dataset.104

2 Extractive-Abstractive Framework105

There exists evidence that humans use a two-106

stage extractive-abstractive framework to summa-107

rize long documents (Jing and McKeown, 2000) by108

first extracting salient parts and then deciding what109

to eliminate, reword, and reorganize. Inspired by110

this, we propose EASE, a framework that learns111

extraction and abstraction collectively in an end-to-112

end fashion. This not only provides interpretable113

evidence for the generated summary, which can be114

many times smaller than the original document, but 115

also reduces the effective input length used during 116

abstraction. This has been shown to directly corre- 117

late with the extent of hallucination in pretrained 118

language models (Yang et al., 2020a). 119

In order to formalize the problem, we use the 120

IB principle to learn an optimal model between 121

the original document x and the final summary y 122

through a compressed representation z. The IB 123

objective is to minimize the following: 124

LIB = I(x; z)− βI(z; y), (1) 125

where I() is the mutual information. This objec- 126

tive encourages z to contain only the information 127

about x that is useful in predicting y. Moreover, 128

β controls the trade-off in z between containing 129

information about x (i.e., sparsity) vs about y (i.e., 130

prediction quality). 131

We use a relaxation for (1) similar to Paranjape 132

et al. (2020) to make it tractable. As such, z is 133

obtained by masking the original document x to 134

produce a summaries y. We illustrate EASE in 135

Fig. 2. EASE can perform extraction (i.e., mask- 136

ing) either at the token or at the sentence level. 137

We first describe the token-level model and sub- 138

sequently generalize it for sentence-level extrac- 139

tion. As such, the extractor masks tokens in the 140

original document x to extract a rough summary 141

z, which is used as evidence by the abstractor to 142

produce the summary y. We define z = m � x 143

where m is a boolean mask on the input x. This 144

is similar to the masking process used in Masked 145

Language Models (MLM), except that instead of 146

random masking (Devlin et al., 2019) or heuristic- 147

based masking (Zhang et al., 2019b,d), we learn 148

which tokens should be masked in an end-to-end 149

fashion. Using the variational bound (Alemi et al., 150

2016) on (1), the model is trained using two loss 151

terms. The first loss ensures that the final summary 152

is close to the golden summaries: 153

LTask = Em'p(m|x)[− log qθ(y|m� x)], (2) 154

where qθ(y|z) is a parametric approximation to the 155

true likelihood p(y|z). 156

Similar to Paranjape et al. (2020), we assume 157

that the mask variables over individual words are 158

conditionally independent given the input x. This 159

means that the evidence z can contain redundan- 160

cies, as the extractor chooses evidence individually 161

without conditioning on prior extractions. Since 162

the extracted evidence is not the final summary, 163
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Figure 2: The Extractive-Abstractive model architec-
ture. The extractor samples the evidence from the
source which is used by the abstractor.

the abstractor still has the opportunity to eliminate164

redundancies. Nallapati et al. (2017) explore a165

modeling approach that keeps track of the current166

state of the summary, but we leave this direction to167

future work. Formally,168

pθ(z|x) =
∏
j

pθ(zj |x),169

where pθ(zj |x) = Bernoulli(θj(x)).170

Optimizing the loss in (2) would result in the171

extractor masking no tokens and hence, maximiz-172

ing the mutual information between the input and173

output of the abstractor. Therefore, the second174

loss term is a sparsity constraint to ensure that the175

extractor’s output is a measurable subset of input to-176

kens and can be used as evidence for the abstractor177

output:178

LSparsity =
∑
j

KL[pθ(zj |x), r(zj)], (3)179

where we set the prior distribution r(zj) =180

Bernouli(π). For summarization tasks π can be181

small i.e. 0.3 ≤ π ≤ 0.5. As such, the combined182

loss can be written as:183

LEA =Em'p(z|x)[− log qθ(y|m� x)]

+β
∑
j

KL[pθ(zj |x), Bernouli(π)], (4)184

where pθ(z|x) is the parametric posterior distribu-185

tion over z and β is a hyperparameter to weigh the186

performance-sparsity trade-off.187

2.1 Soft Masking188

The combined loss presented above is not differ-189

entiable, as it includes sampling operations from190

Bernoulli distributions. Since we aim to learn191

the masking function (unlike random masking),192

this would not be amenable to end-to-end train-193

ing using backpropagation. Rather than using194

the REINFORCE algorithm which suffers from 195

high variance (Bastings et al., 2019), we use the 196

Gumbel Softmax reparameterization trick (Jang 197

et al., 2017) similar to Paranjape et al. (2020). 198

This replaces the sampling step with an argmax: 199

argmaxi∈0,1(logp(zj |x) + gi), where gi is a ran- 200

dom sample from the Gumbel(0, 1) distribution. 201

Finally, the argmax is replaced by a weighted soft- 202

max: 203

z∗j =
exp ((log(p(zj = 1|x) + g1)/τ)∑
i∈0,1 exp ((log(p(zj = i|x) + gi)/τ)

.

Note that z∗j ∈ (0, 1) gets boundary values (i.e., 0 204

or 1) when τ → 0 (in practice, we use τ = 0.01). 205

2.2 Model Architecture 206

As illustrated in Fig. 2, our model has two parts: the 207

extractor and the abstractor. The extractor is a pre- 208

trained transformer encoder similar to BERT (De- 209

vlin et al., 2019) with an additional linear layer 210

on top that computes pθ(zj |x). The abstractor 211

on the other hand, is a pretrained seq-to-seq lan- 212

guage model like BART (Lewis et al., 2020). From 213

our experiments, we find a BART-base encoder 214

(6 layers) to be adequate as an extractor model, 215

while we use a BART-large abstractor. Note that 216

we can use any other pretrained encoders (e.g., 217

RoBERTa (Liu et al., 2019)) and seq2seq models 218

(e.g., Pegasus (Zhang et al., 2019b)) for the extrac- 219

tion and abstraction task, respectively. Also note 220

that after the evidence extraction, in order to ensure 221

that there is no leakage of information, we need to 222

encode the extracted tokens separately again. Us- 223

ing the same encoded representation would leak 224

information to the abstractor about the masked to- 225

kens. 226

During training, given an input x, the extractor 227

generates a probability for each token in x to be 228

selected (i.e. not masked). Based on these prob- 229

abilities (pj), we soft-sample mj with values in 230

(0,1). We then pass z = x � m to the abstrac- 231

tor to generate the output. In our experiments, we 232

tried two different ways of masking the input us- 233

ing m: 1) directly masking the embedding, i.e. 234

zj = mj ∗ xj + (1−mj) ∗ xmask where xmask is 235

initialized from the BART’s original <mask> to- 236

ken, and, 2) using m as an attention mask for both 237

the encoder’s self attention as well as the encoder- 238

decoder cross attention, i.e. to block attention to 239

the masked tokens. However, we did not observe a 240
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significant difference between these two schemes.241

During the inference, the extractor deterministi-242

cally selects the top π% of the source tokens. Such243

hard masking ensures that the sparsity requirement244

is exactly met during inference time.245

2.3 Sentence-level Extraction246

In the previous section, we described token-level247

extraction where each token in the source docu-248

ment is individually masked or retained. The main249

drawback of using scattered token-level extraction250

is that it is difficult to be used as interpretable evi-251

dence. While in Section 5.1, we explore a method252

for improving the interpretability of token-level ev-253

idence by encouraging span-level extraction, in this254

section, we focus on sentence-level extraction as255

an effective means to achieve interpretability.256

In sentence-level extraction approaches, the257

model first selects the sentences that need to be258

masked, followed by the masking of all tokens259

within those sentences. Unlike the token-level260

model, the extractor’s output in this setup is a lin-261

guistically plausible (but possibly redundant) ex-262

tractive summary, i.e., complete sentences from the263

source. For sentence-level extraction, we add a spe-264

cial [CLS] token to the beginning of each sentence265

and use its representation as the sentence encoding.266

We also add a segment embedding to each token in267

the sentence to distinguish between the sentences268

in a document. The segment embeddings are initial-269

ized randomly and learned during training. We use270

the [CLS] token representation to perform soft271

masking as in the token-level model.272

3 Experimental Settings273

Datasets: We primarily experiment with the274

CNN/DailyMail dataset (Hermann et al., 2015) ow-275

ing to its extractive-like nature; its summaries are276

typically closely related to the source sentences.277

We also present results on the XSUM (Narayan278

et al., 2018) dataset, a highly abstractive dataset in279

which summaries can be viewed as a title for the280

source documents.281

Model Hyperparameters and evaluation met-282

rics: We initialize the seq-to-seq abstractor with283

the BART-large model and initialize the extractor284

with the BART-base encoder.285

We use the fairseq codebase1 for our experiments286

and use the same hyperparameters as used for fine-287

1https://github.com/pytorch/fairseq

tuning BART on CNN/DM and XSum by the of- 288

ficial codebase. Specifically, we fine-tune BART 289

using a polynomial decay learning rate scheduler 290

with the Adam optimizer (Kingma and Ba, 2014). 291

We use a learning rate of 3e-5 with 500 warmup 292

steps and train for 20000 steps. During our initial 293

experiments, we observed similar results for values 294

of β ∈ [1, 10] in (4). We use β = 5 in our reported 295

results. We use ROUGE F1 scores (R1/R2/RL) 296

for the automatic evaluation. ROUGE scores were 297

calculated using the files2rouge toolkit2. 298

4 Results 299

In this section, we report the performance of our 300

model from both automatic and human evaluation 301

perspective, along with ablation studies. Figure 4 302

shows example summaries along with evidence 303

highlighted from our system at different sparsity 304

levels. 305

4.1 Automatic Evaluation 306

In Table 1, we present the performance of our 307

model for CNN/DM and XSum when using a spar- 308

sity of 0.5, with a BART-base encoder as the extrac- 309

tor and a BART-large abstractor. We also present 310

the performance of BART and BERTSUM as repre- 311

sentative abstractive and extractive systems, respec- 312

tively. Moreover, they can be considered as EASE’s 313

exctractor (BERTSUM) or abstractor (BART) on 314

their own. Note that for BERTSUM, we present the 315

performance of the Ext-large version for CNN/DM 316

and the two-stage ExtAbs version for XSum. We 317

also include results from previous evidence-based 318

extractive-abstractive systems for comparison. For 319

CNN/DM, our token-level and sentence-level mod- 320

els that use around 50% of the source input perform 321

slightly better than BERTSUM, but slightly worse 322

than BART-large. For XSum, our gap with the 323

BART-large baseline is larger. This is expected 324

given that XSum summaries are highly abstractive, 325

making it much harder for the extractor to extract 326

the most important information in an end-to-end 327

fashion. 328

Moreover, we observe that the sentence-level 329

model performs slightly better than the token- 330

level model for CNN/DM but slightly worse for 331

XSum. We hypothesize that for the more extrac- 332

tive CNN/DM dataset, keeping continuous spans 333

of text is of paramount importance, while for the 334

more abstractive XSum dataset, the sparsity budget 335

2https://github.com/pltrdy/files2rouge
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Model CNN/DailyMail XSum

BART-large (Lewis et al., 2019) 44.16/21.28/40.90 45.14/22.27/37.25
BERTSUM (Liu and Lapata, 2019) 43.85/20.34/39.90 38.81/16.50/31.27

Previous evidence-based Extractive-Abstractive systems

Bottom-Up (Gehrmann et al., 2018) 40.96/18.38/38.16 -
SEAL (Zhao et al., 2020) 39.3/16.5/- -

EASE (ours)

Token-level sparsity 0.5 43.96/20.91/40.74 42.70/19.38/33.81
Sentence-level sparsity 0.5 43.98/20.95/40.78 41.82/19.05/33.99

Table 1: ROUGE-1/2/L results for CNN/DailyMail and XSum.
‘

Figure 3: R1/R2/RL vs Sparsity for token level and
sentence level models. For sentence level model, we
enforce it to extract at least three sentences.

can be better spent on a more scattered extraction336

of key pieces throughout the document. In section337

5, we explore ideas to 1) improve the performance338

of the token-level model using pre-training; 2) im-339

prove the interpretability of token-level models by340

encouraging the extraction of continuous spans;341

and 3) improve the performance of both token and342

sentence level models using semi-supervised learn-343

ing.344

4.2 Model Analysis345

Effect of Sparsity Prior: In this section, we in-346

vestigate the effect of sparsity on the generated347

summaries. Figure 3 presents ROUGE score of348

both token-level and sentence-level models, trained349

with different sparsity priors. As expected, in-350

creasing the sparsity ratio improves the ROUGE351

scores at the cost of more verbose extracted evi-352

dence. Moreover, the performance gains flatten353

after a sparsity of around 0.3. We found that token-354

level models are more robust to lower sparsity rates,355

i.e. they can remove functional words without los-356

Model Token level Sentence Level
base Ex + base Ab 42.9/19.8/39.7 42.42/19.7/39.27

base Ex + base Ab shared 42.28/19.37/39.14 42.58/19.81/39.43
base Ex + large Ab 43.96/20.91/40.74 43.98/20.95/40.78

Table 2: Ablation studies on the effect of model size
and sharing. All models are trained with 0.5 sparsity.

ing document information, but they are not well- 357

suited in terms of interpretability. Note that for 358

the sentence-level models, at inference time we ex- 359

tracted at least three sentences to ensure that short 360

documents would have enough evidence at lower 361

sparsity rates. 362

Effect of model size: We examine the effect of 363

using models of different sizes on summarization 364

performance, and also explore the possibility of 365

sharing the encoder. We consider BART-base and 366

BART-large for the abstractor. We also experi- 367

mented with using RoBERTa (Liu et al., 2019) and 368

BART-large encoder for the extractor but found 369

it very unstable and hard to tune the relative loss 370

weights. To explore the possibility of reducing the 371

model size, we also experiment with sharing the 372

encoder’s parameters between the extractor and 373

abstractor encoders. Table 2 presents results of 374

these settings for both token-level and sentence- 375

level models using a sparsity of 0.5. 376

We can see that using a large model for the ab- 377

stractor yields significant improvements. Moreover, 378

sharing the encoder between the extractor and the 379

abstractor does not hurt the performance. However, 380

since using a large abstractor is essential while us- 381

ing a large extractor is unstable during training, 382

we use a BART-base extractor and a BART-large 383

abstractor for our default setting. 384

Effect of extraction: We evaluate the effect of 385

extraction quality on the final summary for our 386
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Extract Sentences Sparsity 0.5 Sparsity 0.3
π% 43.98/20.95/40.78 43.38/20.57/40.2

Top-3 41.37/18.58/38.18 41.19/18.63/38.01
Lead-3 40.84/18.16/37.71 40.6/18.05/37.46

Random-3 31.46/10.04/28.92 31.34/10.06/28.79

Table 3: Effect of different extraction techniques on the
final summary.

sentence-level models. We use our model trained387

with different sparsity rates but during inference,388

feed only the top-3 sentences with highest scores389

to the abstractor for generating the summary. We390

compare with the baselines of using random-3 and391

lead-3 sentences as well as using all π% of sen-392

tences. Table 3 presents results of our two models393

with sparsity values of 0.5 and 0.3. We find that394

for both models, summaries using the top-3 sen-395

tences selected by the extractor outperform lead-3396

extraction, even though the CNN/DM dataset has397

a strong lead bias. We conclude that our extractor398

is indeed extracting important sentences, which we399

further confirm using human evaluations, described400

in the next section.401

4.3 Human Evaluation402

We conduct human evaluation on both the extracted403

evidence and the generated summaries. For the404

summaries, we asked annotators to rate them be-405

tween 1-5 on two qualitative aspects of the sum-406

mary: Consistency and Relevance. Consistency is407

the factual alignment between the summary and the408

source document, measuring whether the summary409

is changing details or hallucinating. Relevance410

measures whether the summary captures the key411

points of the source document. We compared our412

generated summaries with BART as a baseline. We413

also evaluate the relevance of extractions from the414

sentence-level models. To make evaluation easier,415

we gather the top-3 sentences with the highest ex-416

traction scores and ask annotators whether those417

are the most important sentences in the source doc-418

ument. Here, we compare with Lead-3 extraction419

as a baseline.420

We sampled 200 examples from the CNN/DM421

test set and conducted human evaluation using422

Amazon Mechanical Turk with three annotators.423

We present the average annotators’ scores in Ta-424

ble 4, using z-score p-values smaller than 0.01 to425

measure statistical significance. We find that for426

extraction relevance, the top-3 sentences from our427

extractor scored higher than Lead-3, which itself428

received a high relevance score due to the strong429

Models Summary Extraction
Consistency Relevance Relevance

BART 4.89 4.13 -
Token-level model 4.77 4.16 -

Sentence-level model 4.86 3.80 4.45
Lead-3 extraction - - 4.38

Table 4: Human Evaluation results on CNN/DM. We
evaluate our token-level and sentence-level models,
with 0.5 sparsity on summary relevance and consis-
tency and compare with BART. We evaluate extrac-
tion relevance of our sentence-level model and compare
with Lead-3.

lead bias in the CNN/DM dataset. For abstractive 430

summaries, we find that the sentence-level model 431

achieves a similar consistency score as BART, but 432

slightly better than the token-level model. On one 433

hand, the sentence model achieves a lower rele- 434

vance score than BART and token model. We hy- 435

pothesize that the interpretable nature of the sen- 436

tence model results in a loss of some of the key 437

information in the source document as expected, 438

whereas the token model avoids this by extract- 439

ing keywords throughout the source. On the other 440

hand, the token-level model can fabricate new de- 441

tails between the extracted keywords, which results 442

in lower consistency. As such, there is an inherent 443

trade-off between relevance and interpretability. 444

5 Further improvements and Future 445

Work 446

5.1 Span-level model with Lasso loss 447

In the previous section, we found that although 448

sentence-level models are interpretable, they can 449

miss out on key parts of the source document. How- 450

ever, token-level models enjoy much more freedom 451

during extraction but yield evidence that is not very 452

useful for humans. To find a compromise between 453

these two, i.e. a span-level model, we attempt to 454

make the evidence extracted by token-level models 455

more contiguous, by adding a lasso loss (Bastings 456

et al., 2019) to the total loss in (4): 457

LLasso =
n−1∑
i=0

|zi − zi+1|, (5) 458

where n is the number of source tokens. The lasso 459

loss ensures that the number of transitions between 460

the masked and unmasked tokens is minimized and 461

hence, the model extracts more contiguous spans 462

of text as evidence. In the first row of Table 5, 463

we observe that the lasso loss mainly improves the 464
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Source Document:
(CNN)Two passengers found dead on a cruise ship in Puerto Rico appear to have died in a murder-suicide, the cruise line said. Holland America Line said two guests were
found dead inside their stateroom on the ms Ryndam at 11:30 a.m. Thursday. "The cabin was immediately secured, and the authorities were notified, including the FBI," Holland
America said. "We are cooperating fully with the investigation, and the authorities will make the official determination on what occurred." FBI spokesman Moises Quinones said
authorities were on scene investigating. The ship left Tampa, Florida, on March 29 on a 14-day Southern Caribbean cruise. It’s currently in San Juan, Puerto Rico. Puerto Rico Port
Authority spokesman Efraín Santiago told El Nuevo Dia newspaper that the cleaning staff on the ship had discovered the deceased passengers after knocking on the cabin’s door.
Summary (Sparsity 0.3): Holland America Line said two guests were found dead inside their stateroom on the ms Ryndam at 11:30 a.m. Thursday. The FBI is investigating.
Source Document:
(CNN)Gastrointestinal illness has gripped 100 people on the cruise ship Celebrity Infinity, according to a report from the Centers for Disease Control. Of the ship’s 2,117
passengers, 95 have suffered from vomiting, diarrhea and other symptoms, the CDC said. The illness has also affected five members of the 964-person crew. The CDC has yet
to determine what’s causing the ailments. Two staffers from the agency are scheduled to meet the West Coast-based ship in San Diego on Monday. The Infinity left San Diego on
March 29. It made its last stop in Puerto Vallarta, Mexico, on April 10, according to MarineTraffic.com. Celebrity Cruises has been taking action since the outbreak began, including
increasing cleaning and disinfection procedures, keeping passengers informed and taking specimens from the afflicted for testing by the CDC, the agency says. According to
the Maritime Executive, this is the third time the Celebrity Infinity has suffered an outbreak of gastrointestinal illness, with others occurring in 2006 and 2013. The ship was built in 2001
and refurbished in 2011.
Summary (Sparsity 0.5): Of the ship’s 2,117 passengers, 95 have suffered from vomiting, diarrhea. The illness has also affected five members of the 964-person crew. Celebrity Cruises
has been taking action since the outbreak began.

Figure 4: Summarization outputs with their evidence (highlighted), from our systems at different sparsity levels.

token-level model. This is particularly evident in465

the improvement in RL which is due to the extrac-466

tion of contiguous spans as evidence.467

5.2 Unlabeled Pretraining468

Although we initialize the extractor and abstrac-469

tor with pretrained language models, the model470

may benefit from further pretraining suited to the471

downstream task. To this end, we use our model472

in an auto-encoding fashion, i.e., the abstractor473

reconstructs the original text using the extracted474

pieces selected by the extractor. Our hypothesis475

is that an extractor capable of extracting the most476

informative parts from which the source can be re-477

constructed should be better positioned to extract478

important parts of the source, resulting in higher-479

quality summaries. Therefore, we pretrain EASE480

on the WikiText-103 (Merity et al., 2017) dataset481

to reconstruct the original unlabeled documents482

using the same loss as in (4) by setting Y = X .483

This can be viewed as a special case of summariza-484

tion, where the compression rate is one. We only485

pretrain the token-level model, since pretraining486

sentence-level models without measures such as487

topic guidance (Kang and Hovy, 2020) typically488

leads to hallucination. Results on the CNN/DM489

dataset by adding pretraining are presented in the490

second row of Table 5. Even though pretraining im-491

proves the token-level model, results for the span-492

level model are mixed. Our hypothesis is that the493

lasso continuity helps with summarization by pick-494

ing contiguous spans, as evidenced by the high495

RL. However, during the reconstruction pretrain-496

ing, the lasso loss can be problematic by masking497

long spans, which are then prone to hallucinations.498

We leave pretraining alongside span extraction us-499

ing techniques such as guided reconstruction to500

future work.501

Model Token level Span Level (lasso)
vanilla EASE 43.96/20.91/40.74 44.33/20.67/41.06
+ pretraining 44.12/20.89/40.80 44.06/20.82/40.83

Table 5: CNN/DM results on token-level models
trained with lasso loss and pretraining.

Model Token level Sentence level
vanilla EASE 43.96/20.91/40.74 43.98/20.95/40.78

+ SSL 44.28/21.21/41.0 44.10/21.12/40.89

Table 6: Results on token level and sentence level mod-
els, trained with additional semi-supervised extraction.

5.3 Semi-supervised Training 502

Multiple recent works (Nallapati et al., 2017; Liu 503

and Lapata, 2019) have explored heuristics to ob- 504

tain pseudo alignments between target summaries 505

and source sentences for summarization datasets. 506

To evaluate the effect of weakly supervising the ex- 507

tractor in EASE using these pseudo labels, we use 508

the greedy procedure of Liu and Lapata (2019) to 509

obtain oracle extractive annotations for CNN/DM. 510

As such, we maintain an evidence set and greed- 511

ily add source sentences to the set that yield the 512

maximum increase in its ROUGE score against 513

the target summary. This yields a binary label- 514

ing of input sentences and we introduce an ad- 515

ditional binary cross entropy loss to our training 516

objective in (4) between this binary labeling and 517

the predicted masking probabilities. By using the 518

sentence-level pseudo labels for the tokens of each 519

sentence, we also add this loss to the token-level 520

models. We have shown the results in Table. 6. We 521

observe improvements in all ROUGE metrics for 522

both sentence-level and token-level models, though 523

the gains on the former are more modest. Studying 524

the interaction of this objective with the aforemen- 525

tioned lasso objectives is left for future work. 526
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6 Related Work527

6.1 Pretrained Models for Summarization528

Lewis et al. (2020) introduced BART, a general-529

purpose denoising seq2seq transformer, that530

achieved the state-of-the-art results on many sum-531

marization tasks. Later, Zhang et al. (2019b) ex-532

tended the MLM denoising objective using sen-533

tence masking. Zhang et al. (2019c) introduced a534

multi-stage encoder for extractive summarization,535

whereas Zhang et al. (2019a) use a two-stage de-536

coder to generate summaries by creating a draft537

and refining it using a pretrained language model.538

In EASE, we use pretrained models, i.e., BART, to539

initialize the extractive and abstractive modules but540

after that, use an end-to-end loss that trains both541

modules simultaneously.542

6.1.1 Self-supervised Summarization543

Miao and Blunsom (2016) introduced an au-544

toencoder setup for sentence compression to re-545

duce the need for labeled examples. A copy546

ptr/generator model was used for the compressor547

which alongside the reconstructor is trained to re-548

construct the unlabeled documents. Moreover, RE-549

INFORCE (Williams, 1992) was used to train the550

model end-to-end. Baziotis et al. (2019) intro-551

duced a similar autoencoder setup but used the552

Gumbel Softmax reparametrization for training.553

(Févry and Phang, 2018) also used a denoising au-554

toencoder to compress sentences and a countdown555

at the decoder to control summary length.556

Inspired by the IB principle, West et al. (2019)557

introduced a recursive algorithm to prune a docu-558

ment to form an unsupervised extractive summary.559

These summaries are in turn used to train a self-560

supervised system using a next-sentence objective561

is used. In contrast, we use a loss formulation de-562

rived directly from the IB and train the model end-563

to-end. (Saito et al., 2020) used a saliency model to564

extract important pieces of a document before feed-565

ing them to an abstractive seq2seq model. In con-566

trast with our model, the saliency module is trained567

separately by using heuristics to provide pseudo568

labels for the extraction. (Yang et al., 2020b) pro-569

posed pretraining over millions of news articles570

using the lead sentence as the self supervision.571

6.2 Extractive-Abstractive Summarization572

The transformer decoder (Liu* et al., 2018) was573

first used to accommodate long documents from574

a coarse extractive summarizer. Later, Zhao et al.575

(2020) also focus on long-document summarization 576

and train a joint extractive-abstractive model by 577

weakly supervising the extractor through pseudo 578

labels. This model, although interpretable, does 579

poorly on a dataset like CNN/DM. (Pilault et al., 580

2020) introduce another interpretable summarizing 581

model for long documents by performing a sim- 582

ple extractive step to condition the decoder. They 583

show that this approach produces more abstractive 584

summaries compared with the copy mechanism. 585

Unlike these models, we train both modules jointly 586

using the theoretically grounded IB principle with 587

no pseudo labels. Moreover, we seek consistent 588

models suitable for more extractive datasets and 589

achieve results on par with the abstractive model 590

while only using half of the input. (Gehrmann et al., 591

2018) trained a content selector separately to tag 592

the words and then use bottom-up attention to only 593

copy words from the tagged set. Similar to our 594

token-level model, this is not useful evidence. 595

Compressive summarization is another way to 596

have a trade-off between extractive and abstrac- 597

tive methods where extractive summaries are com- 598

pressed to form the final summary (Mendes et al., 599

2019). Recently, Desai et al. (2020) use syntactic 600

rules to find a high-recall candidate set and then use 601

the notions of plausibility and salience to ensure 602

the grammaticality and importance of the remain- 603

ing pieces, respectively. Unlike compressive sum- 604

marization, we explore an extractive-abstractive 605

framework where a concise abstractive summary 606

can be traced back to the evidence; learned jointly 607

with no manual rules or postprocessing. 608

7 Conclusion 609

In this paper, we introduced EASE, an extractive- 610

abstractive framework for summarization tasks that 611

trains an extractor and an abstractor in an end-to- 612

end fashion. The extracted evidence can be viewed 613

as an interpretable extractive summary of the sum- 614

mary from which the final summary is generated 615

by the abstractor. We show that our sentence-level 616

extractive-abstractive summarization systems are 617

better than strong extractive-abstractive baselines 618

and either on-par or only slightly lower in quality 619

compared to strong abstractive baselines. 620
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8 Ethical Considerations621

Intellectual Properties and Privacy Rights All622

of the datasets (CNN/DM and XSum) used in our623

study are publicly available. Regarding privacy624

rights, the authors of the paper completed IRB hu-625

man subject protection training for conducting this626

study.627

Compensation for Annotators We compen-628

sated the Turkers approximately $15 per hour. We629

first annotated examples in-house to determine the630

required annotation speed. We evaluated 200 ex-631

amples with 8 annotations per example (including632

outputs from different models) and typically each633

example takes around 10 minutes.634

Steps Taken to Avoid Potential Problems We635

interacted closely with the Turkers to ensure that636

compensation was fair and that the instructions637

were clear. We did pilot examples with each an-638

notator in the beginning to help them to be better639

calibrated.640

Environmental Cost The experiments described641

in the paper make use of V100 GPUs with 32GB642

memory. We used up to 8 GPUs per experiment.643

The experiments may take several hours. We didn’t644

do a lot of parameter search: we re-used the best645

parameter reported from BART open-source code646

and only tuned weight on loss on the validation set.647

Future work will be able to draw on these insights648

and models in production may be trained once for649

use using the most promising settings.650
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